Skip to main content
Log in

Investigation of the Effect of Accelerated Hydrothermal Aging on the Cu Sites in a Cu-BEA Catalyst for NH3-SCR Applications

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The influence of hydrothermal aging between 500 and 900 °C for 3 h, on the structure of a Cu-Beta catalyst was studied in this work. The XRD measurements indicated a structural breakdown of the zeolite upon 900 °C hydrothermal aging. This was confirmed from the loss of surface area as measured by BET method. The temperature for the zeolite structure break down was different between the powder bed as opposed to the sample that was washcoated on a cordierite monolith, which was most likely due to slightly different aging conditions and the presence of binders. The strong increase in the intensity of the Cu2p XPS peak indicated that the surface is enriched of copper at higher temperatures due to the zeolite structure collapse. The presence of CuO is usually accompanied by a satellite peak, which was clearly observed at higher binding energies for the catalysts aged at 800 and 900 °C. The XPS results are in good agreement with the UV–Vis experiments, which also point to the formation of copper oxide after high temperature aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baik JH, Yim SD, Nam I-S, Mok YS, Lee J-H, Cho BK, Oh SH (2006) Ind Eng Chem Res 45:5258–5267

    Article  CAS  Google Scholar 

  2. Dumesic J, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) J Catal 163:409–417

    Article  CAS  Google Scholar 

  3. Grossale A, Nova I, Tronconi E, Chatterjee D, Weibel M (2008) J Catal 256:312–322

    Article  CAS  Google Scholar 

  4. Kroecher O, Elsener M (2008) Ind Eng Chem Res 47:8588–8593

    Article  Google Scholar 

  5. Sjovall H, Olsson L, Fridell E, Blint RJ (2006) Appl Catal B 64:180–188

    Article  Google Scholar 

  6. Rahkamaa-Tolonen K, Maunula T, Lomma M, Huuhtanen M, Keiski RL (2005) Catal Today 100:217–222

    Article  CAS  Google Scholar 

  7. Kieger S, Delahay G, Coq B, Neveu B (1999) J Catal 183:267–280

    Article  CAS  Google Scholar 

  8. Park J-H, Park HJ, Baik JH, Nam I-S, Shin C-H, Lee J-H, Cho BK, Oh SH (2006) J Catal 240:47–57

    Article  CAS  Google Scholar 

  9. Sullivan JA, Cunningham J, Morris MA, Keneavey K (1995) Appl Catal B 7:137–151

    Article  CAS  Google Scholar 

  10. Sjövall H, Fridell E, Blint RJ, Olsson L (2007) Top Catal 42:113–117

    Article  Google Scholar 

  11. van Kooten WEJ, Kaptein J, van den Bleek CM, Calis HPA (1999) Catal Lett 63:227–231

    Article  Google Scholar 

  12. Berggrund M, Ingelsten HH, Skoglundh M, Palmqvist AEC (2009) Catal Lett 130:79–85

    Article  CAS  Google Scholar 

  13. Hensen EJM, Zhu Q, Hendrix MMRM, Overweg AR, Kooyman PJ, Sychev MV, van Santen RA (2004) J Catal 221:560–574

    Article  Google Scholar 

  14. Toops TJ, Nguyen K, Foster AL, Bunting BG, Ottinger NA, Pihl JA, Hagaman EW, Jiao J (2010) Catal Today 151:257–265

    Article  CAS  Google Scholar 

  15. Wilken N, Wijayanti K, Kamasamudram K, Currier NW, Vedaiyan R, Yezerets A, Olsson L (2012) Appl Catal B 111–112:58–66

    Google Scholar 

  16. Peden CHF, Kwak JH, Burton SD, Tonkyn RG, Kim DH, Lee JH, Jen HW, Cavataio G, Cheng Y, Lambert CK (2012) Catal Today 184(1):245–251

    Article  CAS  Google Scholar 

  17. Kwak JH, Tran D, Burton SD, Szanyi J, Lee JH, Peden CHF (2012) J Catal 287:203–209

    Article  CAS  Google Scholar 

  18. Fleisch TH, Mains GJ (1982) Appl Surf Sci 10:51–62

    Article  CAS  Google Scholar 

  19. Ertl G, Hierl R, Knozinger H, Thiele N, Urbach HP (1980) Appl Surf Sci 5:49–64

    Article  CAS  Google Scholar 

  20. McEwen J-S, Anggara T, Schneider WF, Kispersky VF, Miller JT, Delgass WN, Ribeiro FH (2012) Catal Today 184:129–144

    Article  CAS  Google Scholar 

  21. Gurevich SA, Zara TA, Konnikov SG, Mikushkin VM, Nikonov SY, Sitnikova AA, Sysoev SE, Khorenko VV, Shnitov VV, Gordeev YS (1997) Phys Solid State 39(10):1691–1695

    Google Scholar 

  22. Ghodselahi T, Vesaghi MA, Shafiekhani A, Baghizadeh A, Lameii M (2008) Appl Surf Sci 255:2730–2734

    Article  CAS  Google Scholar 

  23. Shihabi DS, Garwood WE, Chu P, Miale JN, Lago RM, Chu CT-W, Chang CD (1985) J Catal 93:471–474

    Article  CAS  Google Scholar 

  24. Sultana A, Nanba T, Haneda M, Sasaki M, Hamada H (2010) Appl Catal B 101:61–67

    Article  CAS  Google Scholar 

  25. Liang C, Li X, Qu Z, Tade M, Liu S (2012) Appl Surf Sci 258:3738–3743

    Article  CAS  Google Scholar 

  26. Gang L, van Grondelle J, Anderson BG, van Santen RA (1999) J Catal 186:100–109

    Article  CAS  Google Scholar 

  27. Lei GD, Adelman BJ, Sárkány J, Sachtler WMH (1995) Appl Catal B 5:245–256

    Article  CAS  Google Scholar 

  28. Praliaud H, Mikhailenko S, Chajar Z (1998) Appl Catal B 16(4):359–374

    Google Scholar 

Download references

Acknowledgments

This work has been performed at the Competence Centre for Catalysis and Cummins Inc. The authors would like to thank Cummins Inc. for the financial support. One author (Louise Olsson) would also like to acknowledge the Swedish foundation for strategic research (F06-0006) for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Olsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilken, N., Nedyalkova, R., Kamasamudram, K. et al. Investigation of the Effect of Accelerated Hydrothermal Aging on the Cu Sites in a Cu-BEA Catalyst for NH3-SCR Applications. Top Catal 56, 317–322 (2013). https://doi.org/10.1007/s11244-013-9973-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-9973-9

Keywords

Navigation