Skip to main content
Log in

Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Enantiomerically pure chiral amines are valuable building blocks for the synthesis of pharmaceutical drugs and agrochemicals. Indeed it is estimated that currently 40 % of pharmaceuticals contain a chiral amine component in their structure. Chiral amines are also widely used as resolving agents for diastereomeric salt crystallization. One of the challenges of preparing chiral amines in enantiomerically pure form is the development of cost-effective and sustainable catalytic methods that are able to address the requirement for the entire range of primary, secondary and tertiary amines. In this review we highlight various biocatalytic strategies that have been developed, particularly those based upon asymmetric synthesis or their equivalent therefore (i.e. dynamic kinetic resolution, deracemisation) in which yields and enantiomeric excesses approaching 100 % can be attained. Particular attention is given to the use of monoamine oxidase (MAO-N) from Aspergillus niger which has been engineered by directed evolution to provide a tool-box of variants which can generate enantiomerically pure primary, secondary and tertiary amines. These MAO-N variants are combined with non-selective chemical reducing agents in deracemisation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 3
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Fig. 4
Fig. 5
Fig. 6
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27

Similar content being viewed by others

References

  1. Breuer M, Ditrich K, Habicher T, Hauer B, Kesseler M, Sturmer R, Zelinski T (2004) Angew Chem Int Ed 43:788–824

    Article  CAS  Google Scholar 

  2. Turner NJ (2009) Nat Chem Biol 5:568–574

    Article  Google Scholar 

  3. Nugent TC, El-Shazly M (2010) Adv Synth Catal 352:753–819

    Article  CAS  Google Scholar 

  4. Storace L, Anzalone L, Confalone PN, Davis WP, Fortunak JM, Giangiordano M, Haley JJ, Kamholz K, Li HY, Ma P, Nugent WA, Parsons RL, Sheeran PJ, Silverman CE, Waltermire RE, Wood CC (2002) Org Process Res Dev 6:54–63

    Article  CAS  Google Scholar 

  5. Li C, Xiao J (2008) J Am Chem Soc 130:13208–13209

    Article  CAS  Google Scholar 

  6. Uematsu N, Fujii A, Hashiguchi S, Ikariya T, Noyori R (1996) J Am Chem Soc 118:4916–4917

    Article  CAS  Google Scholar 

  7. Roszkowski P, Maurin JK, Czarnocki Z (2006) Tetrahedron Asymmetry 17:1415–1419

    Article  CAS  Google Scholar 

  8. JS Wu, F Wang, YP Ma, XC Cui, LF Cun, J Zhu, JG Deng, BL Yu (2006) Chem Commun 1766–1768

  9. Guan ZH, Huang K, Yu S, Zhang X (2009) Org Lett 11:481–483

    Article  CAS  Google Scholar 

  10. Liang C, Collet F, Robert-Peillard F, Müller P, Dodd RH, Dauban P (2008) J Am Chem Soc 130:343–350

    Article  CAS  Google Scholar 

  11. Crimmin MR, Arrowsmith M, Barrett AGM, Casely IJ, Hill MS, Procopiou PA (2009) J Am Chem Soc 131:9670–9685

    Article  CAS  Google Scholar 

  12. Reznichenko AL, Hultzsch KC (2010) Organometallics 29:24–27

    Article  CAS  Google Scholar 

  13. Weix DJ, Shi Y, Ellman JA (2005) J Am Chem Soc 127:1092–1093

    Article  CAS  Google Scholar 

  14. Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M (2011) Chem Rev 111:4141–4164

    Article  CAS  Google Scholar 

  15. Schmid A et al (2001) Nature 409:258–268

    Article  CAS  Google Scholar 

  16. Arnold FH (2001) Nature 409:253–257

    Article  CAS  Google Scholar 

  17. Schoemaker HE, Mink D, Wubbolts MG (2003) Science 299:1694–1697

    Article  CAS  Google Scholar 

  18. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Nature 485:185–194

    Article  CAS  Google Scholar 

  19. Foulkes JM, Malone KJ, Coker VS, Turner NJ, Lloyd JR (2011) ACS Catal 1:1589–1594

    Article  CAS  Google Scholar 

  20. Ricca E, Brucher B, Schrittwieser JH (2011) Adv Synth Catal 353:2239–2262

    Article  CAS  Google Scholar 

  21. Balkenhohl F, Ditrich K, Hauer B, Ladner W (1997) J Prakt Chem 339:381–384

    Article  CAS  Google Scholar 

  22. Reetz MT, Schimossek K (1996) Chimia 50:668–669

    CAS  Google Scholar 

  23. Paetzold J, Backvall JE (2005) J Am Chem Soc 127:17620–17621

    Article  CAS  Google Scholar 

  24. Höhne M, Bornscheuer UT (2009) ChemCatChem 1:42–51

    Article  Google Scholar 

  25. Mathew S, Yun H (2012) ACS Catal 2:993–1001

    Article  CAS  Google Scholar 

  26. Matcham GW, Bowen ARS (1996) Chim Oggi 14:20–24

    CAS  Google Scholar 

  27. Shin JS, Kim BG, Liese A, Wandrey C (2001) Biotechnol Bioeng 73:179–187

    Article  CAS  Google Scholar 

  28. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Science 329:305–309

    Article  CAS  Google Scholar 

  29. Simon RC, Grischek B, Zepeck F, Steinreiber A, Belaj F, Kroutil W (2012) Angew Chem Int Ed 51:6713–6716

    Article  CAS  Google Scholar 

  30. Desai AA (2011) Angew Chem Int Ed 50:1974–1976

    Article  CAS  Google Scholar 

  31. Höhne M, Schätzle S, Jochens H, Robins K, Bornscheuer UT (2010) Nat Chem Biol 6:807–813

    Article  Google Scholar 

  32. Mitsukura K, Suzuki M, Tada K, Yoshida T, Nagasawa T (2011) Org Biomol Chem 8:4533–4535

    Article  Google Scholar 

  33. Mitsukura K, Suzuki M, Shinoda S, Kuramoto T, Yoshida T, Nagasawa T (2011) Biosci Biotechnol Biochem 75:1778–1782

    Article  CAS  Google Scholar 

  34. Mitsukura K, Kuramoto T, Yoshida T, Kimoto N, Yamamoto H, Nagasawa T (2013) Appl Microbiol Biotechnol 18:8079–8086

    Article  Google Scholar 

  35. Leipold F, Hussain S, Ghislieri D, Turner NJ (2013) ChemCatChem. doi:10.1002/cctc.201300539

    Google Scholar 

  36. Rodriguez-Mata M, Frank A, Wells E, Leipold F, Turner NJ, Hart S, Turkenburg JP, Grogan G (2013) ChemBioChem 14:1372–1379

    Article  CAS  Google Scholar 

  37. Goto M, Muramatsu H, Mihara H, Kurihara T, Esaki N, Omi R, Miyahara I, Hirotsu K (2005) J Biol Chem 280:40875–40884

    Article  CAS  Google Scholar 

  38. Itoh N, Yachi C, Kudome T (2000) J Mol Catal B 10:281–290

    Article  CAS  Google Scholar 

  39. Abrahamson MJ, Vazquez-Figueroa E, Woodall NB, Moore JC, Bommarius AS (2012) Angew Chem Int Ed 51:3969–3972

    Article  CAS  Google Scholar 

  40. Edmondson DE, Binda C, Mattevi A (2007) Arch Biochem Biophys 464:269–276

    Article  CAS  Google Scholar 

  41. Fitzpatrick PF (2010) Arch Biochem Biophys 493:13–25

    Article  CAS  Google Scholar 

  42. Scrutton NS (2004) Nat Prod Rep 21:722–730

    Article  CAS  Google Scholar 

  43. Miller JR, Edmondson DE (1999) Biochemistry 38:13670–13683

    Article  CAS  Google Scholar 

  44. Reiss R (2008) PhD thesis. University of Manchester, Manchester

  45. Atkin KE, Reiss R, Koehler V, Bailey KR, Hart S, Turkenburg JP, Turner NJ, Brzozowski AM, Grogan G (2008) J Mol Biol 384:1218–1231

    Article  CAS  Google Scholar 

  46. Ghislieri D, Green AP, Pontini M, Willies SC, Rowles I, Frank A, Grogan G, Turner NJ (2013) J Am Chem Soc 135:10863–10869

    Article  CAS  Google Scholar 

  47. Li M, Binda C, Mattevi A, Edmondson DE (2006) Biochemistry 45:4775–4784

    Article  CAS  Google Scholar 

  48. Rowles I, Malone KJ, Etchells LL, Willies SC, Turner NJ (2012) ChemCatChem 4:1259–1261

    Article  CAS  Google Scholar 

  49. Turner NJ (2011) Chem Rev 111:4073–4087

    Article  CAS  Google Scholar 

  50. Schilling B, Lerch K (1995) Mol Gen Genet 247:430–438

    Article  CAS  Google Scholar 

  51. Schilling B, Lerch K (1995) Biochim Biophys Acta 1243:529–537

    Article  Google Scholar 

  52. Sablin SO, Yankovskaya V, Bernard S, Cronin CN, Singer TP (1998) Eur J Biochem 253:270–279

    Article  CAS  Google Scholar 

  53. Alexeeva M, Enright A, Dawson MJ, Mahmoudian M, Turner NJ (2002) Angew Chem Int Ed 41:3177–3180

    Article  CAS  Google Scholar 

  54. Carr R, Alexeeva M, Enright A, Eve TSC, Dawson MJ, Turner NJ (2003) Angew Chem Int Ed 42:4807–4810

    Article  CAS  Google Scholar 

  55. Carr R, Alexeeva M, Dawson MJ, Gotor-Fernandez V, Humphrey CE, Turner NJ (2005) ChemBioChem 6:637–639

    Article  CAS  Google Scholar 

  56. Dunsmore CJ, Carr R, Fleming T, Turner NJ (2006) J Am Chem Soc 128:2224–2225

    Article  CAS  Google Scholar 

  57. KR Bailey, AJ Ellis, R Reiss, TJ Snape, NJ Turner (2007) Chem Commun 3640–3642

  58. Kohler V, Bailey KR, Znabet A, Raftery J, Helliwell M, Turner NJ (2010) Angew Chem Int Ed 49:2182–2184

    Article  Google Scholar 

  59. Znabet A, Polak MM, Janssen E, de Kanter FJJ, Turner NJ, Orru RVA, Ruijter E (2010) Chem Commun 46:7918–7920

    Article  CAS  Google Scholar 

  60. Li T, Liang J, Ambrogelly A, Brennan T, Gloor G, Huisman G, Lalonde J, Lekhal A, Mijts B, Muley S, Newman L, Tobin M, Wong G, Zaks A, Zhang X (2012) J Am Chem Soc 134:6467–6472

    Article  CAS  Google Scholar 

  61. Köhler V, Wilson YM, Dürrenberger M, Ghislieri D, Churakova E, Quinto T, Knörr L, Häussinger D, Hollmann F, Turner NJ, Ward TR (2013) Nat Chem 5:93–99

    Article  Google Scholar 

  62. O’Reilly E, Turner NJ (2013) Nat Chem Biol 9:285–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Turner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghislieri, D., Turner, N.J. Biocatalytic Approaches to the Synthesis of Enantiomerically Pure Chiral Amines. Top Catal 57, 284–300 (2014). https://doi.org/10.1007/s11244-013-0184-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0184-1

Keywords

Navigation