Skip to main content
Log in

Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The adsorption and deactivation characteristics of coprecipitated Cu/ZnO-based catalysts were examined and correlated to their performance in methanol synthesis from CO2 hydrogenation. The addition of Ga2O3 and Y2O3 promoters is shown to increase the Cu surface area and CO2/H2 adsorption capacities of the catalysts and enhance methanol synthesis activity. Infrared studies showed that CO2 adsorbs spontaneously on these catalysts at room temperature as both mono- and bi-dentate carbonate species. These weakly bound species desorb completely from the catalyst surface by 200 °C while other carbonate species persist up to 500 °C. Characterization using N2O decomposition, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis clearly indicated that Cu sintering is the main cause of catalyst deactivation. Ga and Y promotion improves the catalyst stability by suppressing the agglomeration of Cu and ZnO particles under pretreatment and reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saito M (1998) Catal Surv Jpn 2:175–184

    Article  CAS  Google Scholar 

  2. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  3. Liu XM, Lu GQ, Yan ZF, Beltramini J (2003) Ind Eng Chem Res 42:6518–6530

    Article  CAS  Google Scholar 

  4. Bartholomew CH (2001) Appl Catal A 2001:17–60

    Article  Google Scholar 

  5. Twigg MV, Spencer MS (2003) Top Catal 22:191–203

    Article  CAS  Google Scholar 

  6. Kung HK (1992) Catal Today 11:443–453

    Article  CAS  Google Scholar 

  7. Spencer MS (1998) Catal Lett 50:37–40

    Article  CAS  Google Scholar 

  8. Spencer MS (1999) Top Catal 8:259–266

    Article  CAS  Google Scholar 

  9. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng X, Matranga C (2012) ACS Catal 2:1667–1676

    Article  CAS  Google Scholar 

  10. Solymosi F (1991) J Mol Catal 65:337–358

    Article  CAS  Google Scholar 

  11. Hadden RA, Vandervell HD, Waugh KC, Webb G (1988) Catal Lett 1:27–34

    Article  CAS  Google Scholar 

  12. Wang J, Luo L (2008) Catal Lett 126:325–332

    Article  CAS  Google Scholar 

  13. Behrens M, Studt F, Kasatkin I, Kuhl S, Havecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JW, Schlogl R (2012) Science 336:893–897

    Article  CAS  Google Scholar 

  14. Arena F, Italiano G, Barbera K, Bordiga S, Bonura G, Spadaro L, Frusteri F (2008) Appl Catal A 350:16–23

    Article  CAS  Google Scholar 

  15. Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F (2009) Catal Today 143:80–85

    Article  CAS  Google Scholar 

  16. Millar GJ, Rochester CH, Bailey S, Waugh KC (1992) J Chem Soc 88:2085–2093

    CAS  Google Scholar 

  17. Burch R, Golunski SE, Spencer MS (1990) J Chem Soc 86:2683–2691

    Google Scholar 

  18. Burch R, Chappell RJ, Golunski SE (1988) Catal Lett 1:439–444

    Article  CAS  Google Scholar 

  19. Burch R, Chappell RJ (1988) Appl Catal 45:131–150

    Article  CAS  Google Scholar 

  20. Burch R, Chappell RJ, Golunski SE (1989) J Chem Soc 85:3569–3578

    CAS  Google Scholar 

  21. Connor WC, Falconer JL (1995) Chem Rev 95:759–788

    Article  Google Scholar 

  22. Prins R (2012) Chem Rev 112:2714–2738

    Article  CAS  Google Scholar 

  23. Kasatkin I, Kurr P, Kniep N, Trunschke A, Schlogl R (2007) Angew Chem Int Ed 46:7324–7327

    Article  CAS  Google Scholar 

  24. Tabatabaei J, Sakakini BH, Watson MJ, Waugh KC (1999) Catal Lett 59:143

    Article  CAS  Google Scholar 

  25. Wilmer H, Genger T, Hinrichsen O (2003) J Catal 215:188–198

    Article  CAS  Google Scholar 

  26. Rasmussen PB, Holmblad PM, Christoffersen H, Taylor PA, Chorkendorff I (1993) Surf Sci 287:79–83

    Article  Google Scholar 

  27. Genger T, Hinrichsen O, Muhler M (1999) Catal Lett 59:137–141

    Article  CAS  Google Scholar 

  28. Anger G, Winkler A, Rendulic KD (1989) Surf Sci 220:1–17

    Article  CAS  Google Scholar 

  29. Duprez D, Barbier J, Hamida ZF, Bettahar M (1984) Appl Catal 12:219–225

    Article  CAS  Google Scholar 

  30. Muhler M, Nielsen LP, Tornqvist E, Clausen BS, Topsoe H (1992) Catal Lett 14:241–249

    Article  CAS  Google Scholar 

  31. Koeppel RA, Baiker A, Schild C, Wokaun A (1991) J Chem Soc 87:2821–2828

    CAS  Google Scholar 

  32. Millar GJ, Rochester CH (1993) J Chem Soc 89:1109–1115

    CAS  Google Scholar 

  33. Bianchi D, Chafik T, Khalfallah M, Teichner SJ (1993) Appl Catal A 105:223–249

    Article  CAS  Google Scholar 

  34. Schild C, Wokaun A, Baiker A (1990) J Mol Catal 63:243–254

    Article  CAS  Google Scholar 

  35. Collins SE, Baltanas MA, Bonvardi AL (2004) J Catal 226:410–421

    Article  CAS  Google Scholar 

  36. Edwards JF, Schrader GL (1985) J Phys Chem 89:782–788

    Article  CAS  Google Scholar 

  37. Grabow LC, Mavrikakis M (2011) ACS Catal 1:365–384

    Article  CAS  Google Scholar 

  38. Twigg MV, Spencer MS (2001) Appl Catal A 212:161–174

    Article  CAS  Google Scholar 

  39. Sun JT, Metcalfe IS, Sahibzada M (1999) Ind Eng Chem Res 38:3868–3872

    Article  CAS  Google Scholar 

  40. Moulijn JA, Diepen AEv, Kapteijn F (2001) Appl Catal A 212:3–16

    Article  CAS  Google Scholar 

  41. Campbell CT, Parker SC, Starr DE (2002) Science 298:811–813

    Article  CAS  Google Scholar 

  42. Wanke SE, Flynn PC (1975) Catal Rev Sci Eng 12:93–135

    Article  CAS  Google Scholar 

  43. Bartholomew CH (1993) Appl Catal A 107:1–57

    Article  CAS  Google Scholar 

  44. Kurr P, Kasatkin I, Girgsdies F, Trunschke A, Schlögl R, Ressler T (2008) Appl Catal A 348:153–164

    Article  CAS  Google Scholar 

  45. Matsumura Y, Ishibe H (2009) Appl Catal B 91:524–532

    Article  CAS  Google Scholar 

  46. Hansen PL, Wagner JB, Helveg S, Rostrup-Nielsen JR, Clausen BS, Topsoe H (2002) Science 295:2053–2055

    Article  CAS  Google Scholar 

  47. Koplitz LV, Dulub O, Diebold U (2003) J Phys Chem B 107:10583–10590

    Article  CAS  Google Scholar 

  48. Dulub O, Batzill M, Diebold U (2005) Top Catal 36:65–76

    Article  CAS  Google Scholar 

  49. French SA, Sokol AA, Catlow CRA, Sherwood P (2008) J Phys Chem C 112:7420–7430

    Article  CAS  Google Scholar 

  50. Brehm JU, Winterer M, Hahn H (2006) J Appl Phys 100:064311–064319

    Article  Google Scholar 

Download references

Acknowledgments

As part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE-0004000. This project was funded by the Department of Energy, National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. Neither the United States Government nor any agency thereof, nor any of their employees, nor URS Energy & Construction, Inc., nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sittichai Natesakhawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natesakhawat, S., Ohodnicki, P.R., Howard, B.H. et al. Adsorption and Deactivation Characteristics of Cu/ZnO-Based Catalysts for Methanol Synthesis from Carbon Dioxide. Top Catal 56, 1752–1763 (2013). https://doi.org/10.1007/s11244-013-0111-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0111-5

Keywords

Navigation