Skip to main content

Advertisement

Log in

Application of Highly Functional Ti-Oxide-Based Photocatalysts in Clean Technologies

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Various Ti-oxide based photocatalysts such as the highly dispersed Ti-oxide species within zeolite frameworks, TiO2 nano-particles hybridized with hydrophobic zeolite adsorbents as well as visible light responsive TiO2 thin films have been successfully prepared. Characterization studies at the molecular level, such as X-ray absorption fine structure (XAFS) and photoluminescence (PL), revealed that the highly dispersed Ti-oxide species within the nano-spaces of zeolites possess a tetrahedral coordination and that they demonstrate unique and high performance for the photocatalytic decomposition of NOx and the photocatalytic reduction of CO2 with H2O. A high photocatalytic reactivity for the TiO2 semiconducting photocatalysts could be achieved by blending them with hydrophobic siliceous zeolites which was equal to the performance of TiO2 deposited with expensive Pt particles. The role of the siliceous zeolites can be described as a so-called “catch and release effect of organic compounds”, i.e., (i) the condensation of the reactants within the hydrophobic cavities of zeolites and; (ii) the efficient diffusion of the reactant onto the TiO2 photocatalytic sites. Furthermore, a novel photocatalytic system which can convert abundant solar energy into renewable H2 energy by the decomposition of H2O into H2 and O2 can also be achieved by using visible light responsive TiO2 thin film photocatalysts prepared by a RF-magnetron sputtering deposition method. The conversion efficiency of solar energy into H2 energy may be estimated at ca. 0.1% from the initial rate of H2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Honda K, Fujishima A (1972) Nature 238:37

    Article  Google Scholar 

  2. Inoue T, Fujishima A, Konishi S, Honda K (1979) Nature 277:637

    Article  CAS  Google Scholar 

  3. Kawai T, Sakata T (1980) Nature 286:31

    Article  Google Scholar 

  4. Schrauzer GN, Bard AJ (1977) J Am Chem Soc 99:7189

    Article  CAS  Google Scholar 

  5. Heller A, Shalom AA, Bonner WA, Miller B (1982) J Am Chem Soc 104:1688

    Article  Google Scholar 

  6. Fox MA (1983) Acc Chem Res 16:314

    Article  CAS  Google Scholar 

  7. Sato S, White JM (1980) J Am Chem Soc 102:7206

    Article  CAS  Google Scholar 

  8. Courbon H, Herrmann JM, Pichat P (1981) J Catal 72:129

    Article  CAS  Google Scholar 

  9. Anpo M (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim References therein

    Google Scholar 

  10. Anpo M, Shima T, Kubokawa Y (1985) Chem Lett 1799

  11. Anpo M, Nakaya H, Kodama S, Kubokawa Y, Domen K, Onishi T (1988) J Phys Chem 90:1633

    Article  Google Scholar 

  12. Anpo M, Kawamura T, Kodama S, Maruya K, Onishi T (1988) J Phys Chem 92:438

    Article  CAS  Google Scholar 

  13. Yamashita H, Kawasaki S, Ichihashi Y, Harada M, Takeuchi M, Anpo M (1998) J Phys Chem B 102:5870

    Article  CAS  Google Scholar 

  14. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang SG, Ichihashi Y, Park DR, Suzuki Y, Koyano K, Tatsumi T (1998) Catal Today 44:327

    Article  CAS  Google Scholar 

  15. Yamashita H, Fujii Y, Ichihashi Y, Zhang SG, Ikeue K, Park DR, Koyano K, Tatsumi T, Anpo M (1998) Catal Today 45:221

    Article  CAS  Google Scholar 

  16. Zhang SG, Fujii Y, Yamashita H, Koyano K, Tatsumi T, Anpo M (1997) Chem Lett 659

  17. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M (1997) J Phys Chem B 101:2632

    Article  CAS  Google Scholar 

  18. Matsuoka M, Anpo M (2003) J Photochem Photobiol C: Photochem Rev 3:225

    Article  CAS  Google Scholar 

  19. Anpo M (ed) (2000) Photofunctional zeolites. NOVA, Huntington

    Google Scholar 

  20. Corma A (1997) Chem Rev 97:2373

    Article  CAS  Google Scholar 

  21. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159

    Article  CAS  Google Scholar 

  22. Marchese L, Maschmeyer T, Gianotti E, Coluccia S, Thomas JM (1997) J Phys Chem B 101:8836

    Article  CAS  Google Scholar 

  23. Lamberti C, Bordiga S, Arduino D, Zecchina A, Geobaldo F, Spano G, Genoni F, Petrini G, Carati A, Villain F, Vlaic G (1998) J Phys Chem B 102:6382

    Article  CAS  Google Scholar 

  24. Yamashita H, Yoshizawa K, Ariyuki M, Higashimoto S, Che M, Anpo M (2001) J Chem Soc Chem Commun 435

  25. Sato S, White JM (1980) Chem Phys Lett 72:83

    Article  CAS  Google Scholar 

  26. Grätzel M (ed) (1983) Energy resources through photochemistry and catalysis. Academic Press, New York

    Google Scholar 

  27. Anpo M, Shima T, Kodama S, Kubokawa Y (1987) J Phys Chem 91:4305

    Article  CAS  Google Scholar 

  28. Anpo M, Chiba K, Tomonari M, Coluccia S, Che M, Fax MA (1991) Bull Chem Soc Jpn 64:543

    Article  CAS  Google Scholar 

  29. Takeuchi M, Tsujimaru K, Sakamoto K, Matsuoka M, Yamashita H, Anpo M (2003) Res Chem Intermed 29:619

    Article  CAS  Google Scholar 

  30. Takeda N, Torimoto T, Sampath S, Kuwabata S, Yoneyama H (1995) J Phys Chem 99:9986

    Article  CAS  Google Scholar 

  31. Durgakumari V, Subrahmanyam M, Subba Rao KV, Ratnamala A, Noorjahan M, Tanaka K (2002) Appl Catal A Gen 234:155

    Article  CAS  Google Scholar 

  32. Anpo M, Che M (2000) Adv Catal 44:119

    Article  Google Scholar 

  33. Harris KDM, Edwards P (eds) (2008) Turning points in solid-state, materials and surface science. RSC Publishing, Cambridge

    Google Scholar 

  34. Yamashita H, Kawasaki S, Yuan S, Maekawa K, Anpo M, Matsumura M (2007) Catal Today 126:375

    Article  CAS  Google Scholar 

  35. Takeuchi M, Kimura T, Hidaka M, Rakhmawaty D, Anpo M (2007) J Catal 246:235

    Article  CAS  Google Scholar 

  36. Matsuoka M, Kitano M, Takeuchi M, Anpo M, Thomas JM (2005) Topics Catal 35:305

    Article  CAS  Google Scholar 

  37. Kitano M, Tsujimaru K, Anpo M (2008) Topics Catal 49:4

    Article  CAS  Google Scholar 

  38. Kitano M, Tsujimaru M, Anpo M (2006) Appl Catal A 314:179

    Article  CAS  Google Scholar 

  39. Kikuchi H, Kitano M, Takeuchi M, Matsuoka M, Anpo M, Kamat PV (2006) J Phys Chem B 110:5537

    Article  CAS  Google Scholar 

  40. Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) J Phys Chem B 110:25266

    Article  CAS  Google Scholar 

  41. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Catal Today 122:51

    Article  CAS  Google Scholar 

  42. Kitano M, Takeuchi M, Matsuoka M, Thomas JM, Anpo M (2007) Catal Today 120:133

    Article  CAS  Google Scholar 

  43. Yamashita H, Anpo M (1996) Surf Sci Jpn 17:30

    Google Scholar 

  44. Zhang SG, Ichihashi Y, Yamashita H, Tatsumi T, Anpo M, (1996) Chem Lett 895

  45. Anpo M, Zhang SG, Higashimoto S, Matsuoka M, Yamashita H, Ichihashi Y, Matsumura Y, Souma Y (1999) J Phys Chem B 103:9295

    Article  CAS  Google Scholar 

  46. Zhang J, Minagawa M, Matsuoka M, Yamashita H, Anpo M (2000) Catal Lett 66:241

    Article  CAS  Google Scholar 

  47. Zhang J, Matsuoka M, Yamashita H, Anpo M (2001) J Synchrotron Radiat 8:637

    Article  CAS  Google Scholar 

  48. Zhang J, Minagawa M, Ayusawa T, Natarajan S, Yamashita H, Matsuoka M, Anpo M (2000) J Phys Chem B 104:11501

    Article  CAS  Google Scholar 

  49. Anpo M, Kondo M, Coluccia S, Louis C, Che M (1989) J Am Chem Soc 111:8791

    Article  CAS  Google Scholar 

  50. Zhang SG, Ariyuki M, Mishima H, Higashimoto S, Yamashita H, Anpo M (1998) Microporous Mesoporous Mater 21:621

    Article  CAS  Google Scholar 

  51. Zhang SG, Higashimoto S, Yamashita H, Anpo M (1998) J Phys Chem B 102:5590

    Article  CAS  Google Scholar 

  52. Ikeue K, Yamashita H, Anpo M (1999) Chem Lett 1135

  53. Ikeue K, Yamashita H, Anpo M, Takewaki T (2001) J Phys Chem B 105:8350

    Article  CAS  Google Scholar 

  54. Ikeue K, Nozaki S, Ogawa M, Anpo M (2002) Catal Lett 80:111

    Article  CAS  Google Scholar 

  55. Park DR, Zhang J, Ikeue K, Yamashita H, Anpo M (1999) J Catal 185:114

    Article  CAS  Google Scholar 

  56. Ogawa M, Ikeue K, Anpo M (2001) Chem Mater 13:2900

    Article  CAS  Google Scholar 

  57. Takeuchi M, Deguchi J, Hidaka M, Sakai S, Woo K, Choi P, Park J, Anpo M (2009) Appl Catal B: Environ 89:406

    Article  CAS  Google Scholar 

  58. Paz Y, Luo Z, Rabenberg L, Heller A (1995) J Mater Res 10(11):2842

    Article  CAS  Google Scholar 

  59. Heller A (1995) Acc Chem Res 28:503

    Article  CAS  Google Scholar 

  60. Negishi N, Iyoda T, Hashimoto K and Fujishima A (1995) Chem Lett 841

  61. Negishi N, Takeuchi K, Ibusuki T (1998) J Mater Sci 33:1

    Article  Google Scholar 

  62. Takeuchi M, Yamashita H, Matsuoka M, Hirao T, Itoh N, Iwamoto N, Anpo M (2000) Catal Lett 67:135

    Article  CAS  Google Scholar 

  63. Takeuchi M, Yamashita H, Matsuoka M, Hirao T, Itoh N, Iwamoto N, Anpo M (2000) Catal Lett 66:185

    Article  CAS  Google Scholar 

  64. Bilmes SA, Mandelbaum P, Alvarez F, Victoria NM (2000) J Phys Chem B 104:9851

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Anpo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, M., Sakai, S., Ebrahimi, A. et al. Application of Highly Functional Ti-Oxide-Based Photocatalysts in Clean Technologies. Top Catal 52, 1651–1659 (2009). https://doi.org/10.1007/s11244-009-9300-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9300-7

Keywords

Navigation