Skip to main content
Log in

A Combined Surface Science and Electrochemical Study of Tungsten Carbides as Anode Electrocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

An effective anode electrocatalyst in direct methanol fuel cell (DMFC) should have high activity for the oxidation of methanol and the decomposition of water, while remaining stable under the relatively harsh anode environment. Although the Pt/Ru bimetallic alloy is currently the most effective anode electrocatalyst, both Pt and Ru are expensive due to limited supplies and both are susceptible to CO poisoning. Consequently, the discovery of less expensive and more CO tolerant alternatives to the Pt/Ru catalysts would help facilitate the commercialization of DMFC. In this paper we will discuss the possibility of using tungsten carbides (WC) and Pt-modified WC as potential anode electrocatalysts in DMFC. We will provide an overview of our recent work, using a combined approach of fundamental surface science studies and in-situ electrochemical evaluation of the activity and stability of tungsten carbides. We will demonstrate the feasibility to bridge fundamental surface science studies on single crystals with the electrochemical evaluation on polycrystalline WC films. We will also discuss the synergistic effect by supporting low coverages of Pt on the WC substrate to further enhance the electrochemical performance of WC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hwu HH, Chen JG, Kourtakis K, Lavin JG (2001) J Phys Chem B 105:10037

    Article  CAS  Google Scholar 

  2. Hwu HH, Polizzotti BD, Chen JG (2001) J Phys Chem B 105:10045

    Article  CAS  Google Scholar 

  3. Liu N, Kourtakis K, Figueroa JC, Chen JG (2003) J Catal 215:254

    Article  CAS  Google Scholar 

  4. Hwu HH, Chen JG (2003) J Phys Chem B 107:2029

    Article  CAS  Google Scholar 

  5. Hwu HH, Chen JG (2003) J Vac Sci Technol A 21:1488

    Article  CAS  Google Scholar 

  6. Zellner MB, Chen JG (2004) Surf Sci 569:89

    Article  CAS  Google Scholar 

  7. Zellner MB, Chen JG (2005) Catal Today 99:299

    Article  CAS  Google Scholar 

  8. Zellner MB, Chen JG (2005) J Electrochem Soc 152:A1483

    Article  CAS  Google Scholar 

  9. Hamnett A (1997) Catal Today 38:445

    Article  CAS  Google Scholar 

  10. Parsons R, VanderNoot T (1988) J Electroanal Chem 257:9

    Article  CAS  Google Scholar 

  11. Hamnett A, Kennedy BJ (1988) Electrochim Act 33:1613

    Article  CAS  Google Scholar 

  12. Janssen MMP, Moolhuysen J (1976) Electrochim Act 21:869

    Article  CAS  Google Scholar 

  13. Chen JG, Weisel MD, Liu Z-M, White JM (1993) J Amer Chem Soc 115:8875

    Article  CAS  Google Scholar 

  14. Fruhberger B, Chen JG (1996) J Amer Chem Soc 118:11599

    Article  Google Scholar 

  15. Chen JG (1996) Chem Rev 96:1477

    Article  CAS  Google Scholar 

  16. Liu N, Rykov SA, Hwu HH, Buelow MT, Chen JG (2001) J Phys Chem B 105:3894

    Article  CAS  Google Scholar 

  17. Polizzotti BD, Hwu HH, Chen JG (2002) Surf Sci 520:97

    Article  CAS  Google Scholar 

  18. Hwu HH, Chen JG (2005) Chem Rev 105:185

    Article  CAS  Google Scholar 

  19. Levy R, Boudart M (1973) Science 181:547

    Article  CAS  Google Scholar 

  20. Boehm H, Pohl FA (1968) Wiss Ber AEG-Telefunken 41:46

    Google Scholar 

  21. Binder H, Koehlig A, Sandstede G (1969) Amer Chem Soc Div Fuel Chem Prepr 13:99

    CAS  Google Scholar 

  22. Weigert EC, Stottlemyer AL, Zellner MB, Chen JG (2007) J Phys Chem C (in press)

  23. Goodman DW (1990) Ultramicroscopy 34:1

    Article  CAS  Google Scholar 

  24. Stuve EM, Madix RJ (1985) J Phys Chem 89:105

    Article  CAS  Google Scholar 

  25. de Mongeot FB, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) Surf Sci 411:249

    Article  Google Scholar 

  26. Kostov KL, Rauscher H, Menzel D (1992) Surf Sci 278:62

    Article  CAS  Google Scholar 

  27. Crossley A, King DA (1977) Surf Sci 68:528

    Article  CAS  Google Scholar 

  28. Ertl G, Neuman M, Streit KM (1977) Surf Sci 64:393

    Article  CAS  Google Scholar 

  29. Sexton BA (1981) Surf Sci 102:271

    Article  CAS  Google Scholar 

  30. Gibson KD, Dubois LH (1990) Surf Sci 233:59

    Article  CAS  Google Scholar 

  31. Herrero E, Franaszczuk K, Wieckowski A (1994) J Phys Chem 98:5074

    Article  CAS  Google Scholar 

  32. Zelenay P, Horanyi G, Rhee CK, Wieckowski A (1991) J Electroanal Chem 300:499

    Article  CAS  Google Scholar 

  33. Wieckowski A, Zelenay P, Varga KJ (1991) J Chim Phys 88:1247

    CAS  Google Scholar 

  34. Clavilier J, Rodes A, El Achi K, Zamakhchari MA (1991) A J Chim Phys 88:1291

    CAS  Google Scholar 

  35. Jayaraman S, Jaramillo TF, Baek SH, McFarland EW (2005) J Phys Chem B 109:22958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Energy, Office of Basic Energy Sciences (Grant# DE-FG02-00ER15104) for funding of the UHV surface science studies. The synthesis and electrochemical evaluation of WC thin films are supported by the National Science Foundation (Grant # NSF/CTS 0518900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingguang G. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigert, E.C., Zellner, M.B., Stottlemyer, A.L. et al. A Combined Surface Science and Electrochemical Study of Tungsten Carbides as Anode Electrocatalysts. Top Catal 46, 349–357 (2007). https://doi.org/10.1007/s11244-007-9006-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9006-7

Keywords

Navigation