Skip to main content
Log in

First Principles Analysis of the Electrocatalytic Oxidation of Methanol and Carbon Monoxide

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The strong drive to commercialize fuel cells for portable as well as transportation power sources has led to the tremendous growth in fundamental research aimed at elucidating the catalytic paths and kinetics that govern the electrode performance of proton exchange membrane (PEM) fuel cells. Advances in theory over the past decade coupled with the exponential increases in computational speed and memory have enabled theory to become an invaluable partner in elucidating the surface chemistry that controls different catalytic systems. Despite the significant advances in modeling vapor-phase catalytic systems, the widespread use of first principle theoretical calculations in the analysis of electrocatalytic systems has been rather limited due to the complex electrochemical environment. Herein, we describe the development and application of a first-principles-based approach termed the double reference method that can be used to simulate chemistry at an electrified interface. The simulations mimic the half-cell analysis that is currently used to evaluate electrochemical systems experimentally where the potential is set via an external potentiostat. We use this approach to simulate the potential dependence of elementary reaction energies and activation barriers for different electrocatalytic reactions important for the anode of the direct methanol fuel cell. More specifically we examine the potential-dependence for the activation of water and the oxidation of methanol and CO over model Pt and Pt alloy surfaces. The insights from these model systems are subsequently used to test alternative compositions for the development of improved catalytic materials for the anode of the direct methanol fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Donitz W (1998) Int J Hydrogen Energy 23:611

    Article  CAS  Google Scholar 

  2. Wasmus S, Kuver A (1999) J Electroanal Chem 461:14

    Article  CAS  Google Scholar 

  3. Haile SM (2003) Acta Materialia 51:5981

    Article  CAS  Google Scholar 

  4. Bagotzky VS, Osetrova NV, Skundin AM (2003) Russ J Electrochem 39:919

    Article  CAS  Google Scholar 

  5. Dillon R, Srinivasan S, Arico AS, Antonucci V (2004) J Power Sources 127:112

    Article  CAS  Google Scholar 

  6. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  7. Jusys Z, Behm RJ (2001) J Phys Chem B 105:10874

    Article  CAS  Google Scholar 

  8. Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) J Am Chem Soc 127:14607

    Article  CAS  Google Scholar 

  9. Gasteiger HA, Marković N, Ross PN Jr, Cairns EJ (1993) J Phys Chem 97:12020

    Article  CAS  Google Scholar 

  10. Gasteiger HA, Marković N, Ross PN Jr, Cairns EJ (1994) J Phys Chem 98:617

    Article  CAS  Google Scholar 

  11. Gasteiger HA, Marković NM, Ross PN Jr (1995) J Phys Chem 99:8290

    Article  CAS  Google Scholar 

  12. Jusys Z, Kaiser J, Behm RJ (2002) Electrochim Acta 47:3693

    Article  CAS  Google Scholar 

  13. de Mongeot FB, Scherer M, Gleich B, Kopatzki E, Behm RJ (1998) Surf Sci 411:249

    Article  Google Scholar 

  14. Miki A, Ye S, Osawa M (2002) Chem Comm 1500

  15. Waszczuk P, Lu G-Q, Wieckowski A, Lu C, Rice C, Masel RI (2002) Electrochim Acta 47:3637

    Article  CAS  Google Scholar 

  16. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  17. Guidelli R, Schmickler W (2000) Electrochim Acta 45:2317

    Article  CAS  Google Scholar 

  18. Anderson AB, Awad MK (1985) J Am Chem Soc 107:7854

    Article  CAS  Google Scholar 

  19. Anderson AB, Ray NK (1982) J Phys Chem 86:488

    Article  CAS  Google Scholar 

  20. Anderson AB (2003) Electrochim Acta 48:3743

    Article  CAS  Google Scholar 

  21. Anderson AB, Cai Y, Sidik RA, Kang DB (2005) J Electroanal Chem 580:17

    Article  CAS  Google Scholar 

  22. Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178

    Article  CAS  Google Scholar 

  23. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  24. Rossmeisl J, Nørskov JK, Taylor CD, Janik MJ, Neurock M (2006) J Phys Chem B 110:21833

    Article  CAS  Google Scholar 

  25. Okamoto Y, Sugino O, Mochizuki Y, Ikeshoji T, Morikawa Y (2003) Chem Phys Lett 377:236

    Article  CAS  Google Scholar 

  26. Mattson TR, Paddison SJ (2003) Surf Sci 544:L697

    Article  CAS  Google Scholar 

  27. Hartnig C, Spohr E (2005) Chem Phys 319:185

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15

    Article  CAS  Google Scholar 

  29. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  30. Kresse G, Hafner J (1993) Phys Rev B 47:558

    Article  CAS  Google Scholar 

  31. Vanderbilt D (1990) Phys Rev B 41:7892

    Article  Google Scholar 

  32. Taylor CD, Kelly RG, Neurock M (2006) J Electrochem Soc 153:E207

    Article  CAS  Google Scholar 

  33. Cao D, Lu G-Q, Wieckowski A, Wasileski SA, Neurock M (2005) J Phys Chem B 109:11622

    Article  CAS  Google Scholar 

  34. Janik MJ, Neurock M (2007) Electrochim Acta 52:5517

    Article  CAS  Google Scholar 

  35. Filhol JS, Neurock M (2006) Angew Chem Int Ed 45:402

    Article  CAS  Google Scholar 

  36. Taylor CD, Wasileski SA, Filhol JS, Neurock M (2006) Phys Rev B 73:165402

    Article  CAS  Google Scholar 

  37. Reiss H, Heller A (1985) J Phys Chem 89:4207

    Article  CAS  Google Scholar 

  38. Taylor CD, Kelly RG, Neurock M (2007) J Electrochem Soc 154:F55

    Article  CAS  Google Scholar 

  39. Henderson MA (2002) Surf Sci Rep 46:1

    Article  CAS  Google Scholar 

  40. Marković NM, Ross PN Jr (2002) Surf Sci Rep 45:117

    Article  Google Scholar 

  41. Desai SK, Pallassana V, Neurock M (2001) J Phys Chem B 105:9171

    Article  CAS  Google Scholar 

  42. Desai SK, Neurock M (2003) Phys Rev B 68:075420

    Article  CAS  Google Scholar 

  43. Doering DL, Madey TE (1982) Surf Sci 123:305

    Article  CAS  Google Scholar 

  44. Taylor CD, Kelly RG, Neurock M (2007) Phys Rev B submitted

  45. Suzuki T, Yamada T, Itaya K (1996) J Phys Chem 100:8954

    Article  CAS  Google Scholar 

  46. Taylor CD, Janik MJ, Neurock M, Kelly RG (2007) Mol Sim 33:429

    Article  CAS  Google Scholar 

  47. Janik MJ, Neurock M, in preparation

  48. Henkelman G, Jónsson H (2000) J Chem Phys 113:9978

    Article  CAS  Google Scholar 

  49. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  50. Mills G, Jónsson H, Schenter GK (1995) Surf Sci 324:305

    Article  CAS  Google Scholar 

  51. Liu P, Logadottir A, Nørskov JK (2003) Electrochim Acta 48:3731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office—MURI grant (DAAD19-03-1-0169) for fuel cell research. Computational resources at the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory were used, in part, to complete this research as well as computing resources at the U.S. Army Research Laboratory Major Shared Resource Center. The authors thank Dr. Sally Wasileski, Dr. Jean-Sebastian Filhol, and Dr. Andrzej Wieckowski for their contributions to this research effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Neurock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janik, M.J., Taylor, C.D. & Neurock, M. First Principles Analysis of the Electrocatalytic Oxidation of Methanol and Carbon Monoxide. Top Catal 46, 306–319 (2007). https://doi.org/10.1007/s11244-007-9004-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9004-9

Keywords

Navigation