Skip to main content
Log in

Reaction between Hydrosulfide and Iron/cerium (hydr)oxide: Hydrosulfide Oxidation and Iron Dissolution Kinetics

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Hydrosulfide oxidation and iron dissolution kinetics were studied at normal pressure, under inert (N2) atmosphere, in a liquid–solid mechanically-stirred slurry reactor. The kinetic variables undergoing variations were: hydrosulfide initial concentration (0.90–3.30 mmol/L), oxide initial surface area (16–143 m2/L) and pH (8.0–11.0). The hydrosulfide consumption and products (thiosulfate and polysulfide) formation were quantified by means of capillary electrophoresis, while iron dissolution was monitored through atomic absorption spectroscopy. Most of Fe(II) produced at pH = 9.5 remained associated with the oxide surface in the time-scale of the experiments. The hydrosulfide oxidation by the iron/cerium (hydr)oxide was found to be surface-controlled, with rates (R i) of both sulfide oxidation and Fe(II) dissolution expressed in terms of an empirical rate equation: R i = k i[HS] −0.5 t=0 [A] t=0 [H+] −0.5 t=0 , where ki represents the apparent rate constants for the oxidation of HS (k HS) or the dissolution of Fe(II) (k Fe), [HS]t = 0 is the initial hydrosulfide concentration, [A]t = 0 is the initial Fe/Ce (hydr)oxide surface area and [H+]t = 0 is the initial proton concentration. The rate constant, k HS, for the oxidation of hydrosulfide at pH = 9.5 was (3.4219 ± 0.65) × 10−4 mol2 L−1 m−2 min−1, with the rate of hydrosulfide oxidation being ca. 10 times faster than the rate of Fe(II) dissolution (assuming a 1:2 stoichiometric ratio between HS oxidized and Fe(II) produced; k Fe = (3.9116 ± 0.41) × 10−5 mol2 L−1 m−2 min−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.F. Petre F. Larachi (2005) Ind. Eng. Chem. Res. 44 9391 Occurrence Handle1:CAS:528:DC%2BD2MXjs1Kgur8%3D Occurrence Handle10.1021/ie050194x

    Article  CAS  Google Scholar 

  2. D.T. Rickard (1974) Am. J. Sci. 274 941 Occurrence Handle1:CAS:528:DyaE2cXlslOhsbw%3D Occurrence Handle10.2475/ajs.274.8.941

    Article  CAS  Google Scholar 

  3. A.J. Pyzik S.E. Sommer (1981) Geochim. Cosmochim. Acta 45 687 Occurrence Handle1:CAS:528:DyaL3MXkvVeqtL8%3D Occurrence Handle10.1016/0016-7037(81)90042-9

    Article  CAS  Google Scholar 

  4. M. dos Santos Afonso W. Stumm (1992) Langmuir 8 1671 Occurrence Handle1:CAS:528:DyaK38XktFGisbg%3D Occurrence Handle10.1021/la00042a030

    Article  CAS  Google Scholar 

  5. S. Peiffer M. dos Santos Afonso B. Wehrll R. Gachter (1992) Environ. Sci. Technol. 26 2408 Occurrence Handle1:CAS:528:DyaK38XmtF2gt7c%3D Occurrence Handle10.1021/es00036a011

    Article  CAS  Google Scholar 

  6. W. Yao F.J. Millero (1996) Marine Chem. 52 1 Occurrence Handle1:CAS:528:DyaK28XisFSku7s%3D Occurrence Handle10.1016/0304-4203(95)00072-0

    Article  CAS  Google Scholar 

  7. S.W. Poulton (2003) Chem. Geol. 202 79 Occurrence Handle1:CAS:528:DC%2BD3sXpsFektro%3D Occurrence Handle10.1016/S0009-2541(03)00237-7

    Article  CAS  Google Scholar 

  8. S.W. Poulton M.D. Krom R. Raiswell (2004) Geochim. Cosmochim. Acta 68 3703 Occurrence Handle1:CAS:528:DC%2BD2cXnt1Cns70%3D Occurrence Handle10.1016/j.gca.2004.03.012

    Article  CAS  Google Scholar 

  9. D.E. Canfield R. Raiswell S. Bottrell (1992) Am. J. Sci. 292 659 Occurrence Handle1:CAS:528:DyaK3sXkvF2qu7k%3D Occurrence Handle10.2475/ajs.292.9.659

    Article  CAS  Google Scholar 

  10. W. Giggenbach (1971) Inorg. Chem. 101 1333 Occurrence Handle10.1021/ic50101a002

    Article  Google Scholar 

  11. C.F. Petre F. Larachi (2006) J. Sep. Sci. 29 144 Occurrence Handle1:CAS:528:DC%2BD28XhsFagu7k%3D Occurrence Handle10.1002/jssc.200500265

    Article  CAS  Google Scholar 

  12. K.Y. Chen J.C. Morris (1972) Environ. Sci. Technol. 6 529 Occurrence Handle1:CAS:528:DyaE38XksFait7k%3D Occurrence Handle10.1021/es60065a008

    Article  CAS  Google Scholar 

  13. R. Steudel (1996) Ind. Eng. Chem. Res 35 1417 Occurrence Handle1:CAS:528:DyaK28Xhs12nur0%3D Occurrence Handle10.1021/ie950558t

    Article  CAS  Google Scholar 

  14. V. Balek J. Subrt (1995) Pure Appl. Chem. 67 1839 Occurrence Handle1:CAS:528:DyaK2MXpvFSiurY%3D

    CAS  Google Scholar 

  15. M.P. Harrold M.J. Wojtusik J. Riviello P. Henson (1993) J. Chromatogr. 640 463 Occurrence Handle1:CAS:528:DyaK3sXms1Wls7w%3D Occurrence Handle10.1016/0021-9673(93)80216-U

    Article  CAS  Google Scholar 

  16. J. Zhang F.J. Millero (1994) Anal. Chim. Acta 284 497 Occurrence Handle10.1016/0003-2670(94)85056-9

    Article  Google Scholar 

  17. G.W. Luther SuffixIII D.T. Rickard S.M. Theberge A. Oldroyd (1996) Environ. Sci. Technol. 30 671 Occurrence Handle1:CAS:528:DyaK28XhtFWntw%3D%3D Occurrence Handle10.1021/es950417i

    Article  CAS  Google Scholar 

  18. L.S. Balistrieri J.W. Murray B. Paul (1992) Limnol. Oceanogr. 37 510 Occurrence Handle1:CAS:528:DyaK38XlvFOqsrg%3D Occurrence Handle10.4319/lo.1992.37.3.0510

    Article  CAS  Google Scholar 

  19. E.R. Brown J.D. Mazzarella (1987) J. Electroanal. Chem. 222 173 Occurrence Handle1:CAS:528:DyaL2sXksVKru7Y%3D Occurrence Handle10.1016/0022-0728(87)80285-1

    Article  CAS  Google Scholar 

  20. W. Stumm B. Sulzberger (1992) Geochim. Cosmochim. Acta 56 3233 Occurrence Handle1:CAS:528:DyaK38XmtF2gtrk%3D Occurrence Handle10.1016/0016-7037(92)90301-X

    Article  CAS  Google Scholar 

  21. M.V. Biber M. dos Santos Afonso W. Stumm (1994) Geochim. Cosmochim. Acta 58 1999 Occurrence Handle1:CAS:528:DyaK2cXktFChsrk%3D Occurrence Handle10.1016/0016-7037(94)90280-1

    Article  CAS  Google Scholar 

  22. B. Zinder G. Furrer W. Stumm (1986) Geochim. Cosmochim. Acta 50 1861 Occurrence Handle1:CAS:528:DyaL28XlslKjtb8%3D Occurrence Handle10.1016/0016-7037(86)90244-9

    Article  CAS  Google Scholar 

  23. J.G. Hering and W. Stumm, in: Mineral–Water Interface Geochemistry, Reviews Mineralogy, Vol. 23, eds. M.F. Hochella and A.F. White (Mineralogical Society of America, 1990), p. 427

  24. W. Stumm and E. Wieland, in: Aquatic Chemical Kinetics, ed. W. Stumm (Wiley, New York, 1990), p. 367

  25. G.W. Luther III, in: Aquatic Chemical Kinetics, ed. W. Stumm (Wiley, New York, 1990), p. 173

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faïçal Larachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petre, C.F., Larachi, F. Reaction between Hydrosulfide and Iron/cerium (hydr)oxide: Hydrosulfide Oxidation and Iron Dissolution Kinetics. Top Catal 37, 97–106 (2006). https://doi.org/10.1007/s11244-006-0010-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-006-0010-0

Keywords

Navigation