Skip to main content

Advertisement

Log in

Deciphering the impact of pressure on the electronic, mechanical, and structural properties of PrMnO3 through density functional theory analysis

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

This is an investigation on the properties of PrMnO3 using density functional theory under varying pressure conditions ranging from 0 to 50 GPa. The study includes an analysis of the material's structural, electronic, mechanical, and thermal properties, utilizing the computational power of density functional theory. The Goldschmidt tolerance factor, enthalpy, and elastic stability criteria are used to evaluate the material's stability. The results suggest that the material is stable under these criteria. Furthermore, the optimization of the material is discussed based on the computed properties. The results show that the material exhibits good ferromagnetic and spintronic properties, making it a promising candidate for use in optoelectronic and spintronic devices. Overall, the findings highlight the potential of PrMnO3 to be a valuable material for these applications, as revealed through the use of density functional theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data will be available on demand from the corresponding author.

References

  1. Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T, Mais J (2005) Structural, transport, and magnetic properties of RMnO3 perovskites (R= La, Pr, Nd, Sm, 153Eu, Dy). J Solid State Chem 178:629–637

    Article  CAS  Google Scholar 

  2. Aguilar C, Mosquera E, Gracia F, Diosa J, Rodríguez-Páez J (2022) PrMnO3 porous nanostructures: Synthesis and structural, optical and magnetic properties. Mater Res Bull 151:111805

    Article  CAS  Google Scholar 

  3. Hemberger J, Brando M, Wehn R, Ivanov VY, Mukhin A, Balbashov A, Loidl A (2004) Magnetic properties and specific heat of R MnO 3 (R= Pr, Nd). Phys Rev B 69:064418

    Article  Google Scholar 

  4. Ishihara T, Kudo T, Matsuda H, Takita Y (1995) Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J Electrochem Soc 142:1519

    Article  CAS  Google Scholar 

  5. Bouadjemi B, Bentata S, Abbad A, Benstaali W, Bouhafs B (2013) Half-metallic ferromagnetism in PrMnO3 perovskite from first principles calculations. Solid State Commun 168:6–10

    Article  CAS  Google Scholar 

  6. Mukhin A, Ivanov VY, Travkin V, Balbashov A (2001) Magnetic anisotropy and ground state of the rare-earth ions in PrMnO3 and NdMnO3. J Magn Magn Mater 226:1139–1141

    Article  Google Scholar 

  7. Cheng J, Sui Y, Wang X, Liu Z, Miao J, Huang X, Lü Z, Qian Z, Su W (2005) Specific heat of single-crystal PrMnO3. J Phys Condens Matter 17:5869

    Article  CAS  PubMed  Google Scholar 

  8. Ishiham T, Kudo T, Matsuda H, Takita Y (1994) Doped perovskite oxide, PrMnO3, as a new cathode for solid-oxide fuel cells that decreases the operating temperature. J Am Ceram Soc 77:1682–1684

    Article  Google Scholar 

  9. Chen S, Hao Y, Chen R, Su Z, Chen T (2021) Hollow multishelled spherical PrMnO3 perovskite catalyst for efficient catalytic oxidation of CO and toluene. J Alloys Compd 861:158584

    Article  CAS  Google Scholar 

  10. Martin J, Gräf M, Kramer T, Jooss C, Choe M-J, Thornton K, Weitzel K-M (2017) Charge attachment induced transport–bulk and grain boundary diffusion of potassium in PrMnO 3. Phys Chem Chem Phys 19:9762–9769

    Article  CAS  PubMed  Google Scholar 

  11. Huang X, Pei L, Liu Z, Lu Z, Sui Y, Qian Z, Su W (2002) A study on PrMnO3-based perovskite oxides used in SOFC cathodes. J Alloys Compd 345:265–270

    Article  CAS  Google Scholar 

  12. Kumari S, Rai R, Kumar P, Thakur O, Chatterjee R (2022) The effect of Eu dopant on the structural, dielectric and impedance properties of PrMnO3 manganite ceramics. J Phys Chem Solids 160:110365

    Article  CAS  Google Scholar 

  13. Schwarz K, Blaha P (2003) Solid state calculations using WIEN2k. Comput Mater Sci 28:259–273

    Article  CAS  Google Scholar 

  14. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  15. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  16. Murnaghan F (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci 30:244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nazir G, Tariq S, Afaq A, Mahmood Q, Saad S, Mahmood A, Tariq S (2018) Under pressure DFT investigations on optical and electronic properties of PbZrO3. Acta Phys Polon A 133(1):105–113

    Article  CAS  Google Scholar 

  18. Goldschmidt VM (1926) Die gesetze der krystallochemie. Naturwissenschaften 14:477–485

    Article  CAS  Google Scholar 

  19. Karki B, Ackland G, Crain J (1997) Elastic instabilities in crystals from ab initio stress-strain relations. J Phys Condens Matter 9:8579

    Article  CAS  Google Scholar 

  20. Wang J, Yip S, Phillpot S, Wolf D (1993) Crystal instabilities at finite strain. Phys Rev Lett 71:4182

    Article  CAS  PubMed  Google Scholar 

  21. Faridi M, Tariq S, Jamil MI, Batool A, Nadeem S, Amin AJCJOP (2018) Pressure induced band-gap tuning in KNbO3 for piezoelectric applications: quantum DFT-GGA approach. Chin J Phys 56:1481–1487

    Article  CAS  Google Scholar 

  22. Tariq S, Jamil MI, Sharif A, Ramay SM, Ahmad H, Ul Qamar N, Tahir B (2018) Exploring structural, electronic and thermo-elastic properties of metallic AMoO 3 (A= Pb, Ba, Sr) molybdates. Appl Phys A 124:1–8

    Article  CAS  Google Scholar 

  23. Mubarak AA, Tariq S (2021) Influence of pressure on piezoelectric, polarizing, and magnetic nature of SmFeO3: a DFT study. Int J Quantum Chem 121:e26471

    Article  CAS  Google Scholar 

  24. Mubarak A, Hamioud F, Tariq S (2019) Influence of pressure on optical transparency and high electrical conductivity in CoVSn alloys: DFT study. J Electron Mater 48:2317–2328

    Article  CAS  Google Scholar 

  25. Mubarak A, Tariq S, Hamioud F, Alsobhi BO (2019) Thermal, electro-magnetic and thermoelectric investigation of CoNb1− xTixSn (x= 0, 0.75, 0.5, 1) half-Heusler alloy. J Phys Condensed Matter 31:505705

    Article  CAS  PubMed  Google Scholar 

  26. Tariq S, Mubarak A, Kanwal B, Hamioud F, Afzal Q, Zahra S (2020) Enlightening the stable ferromagnetic phase of SrAO3 (A= Cr, Fe and Co) compounds using spin polarized quantum mechanical approach. Chin J Phys 63:84–91

    Article  CAS  Google Scholar 

  27. Tariq S, Mubarak A, Saad S, Jamil MI, Gilani SS (2019) Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z= Ba and Sr) under pressure. Chin Phys B 28:066101

    Article  CAS  Google Scholar 

  28. Gilani SS, Tariq S, Jamil MI, Tahir B, Faridi MA (2018) Elucidating DFT study on structural, electronic, thermal and elastic properties of SrTcO3 by using GGA and mBJ approach. Chin J Phys 56:308–314

    Article  CAS  Google Scholar 

  29. Verma A, Kumar A (2012) Bulk modulus of cubic perovskites. J Alloys Compd 541:210–214

    Article  CAS  Google Scholar 

  30. Sajawal A, Ishfaq M, Murtaza G, Habib I, Muhammad N, Sharif S (2018) Half metallic ferromagnetism in PrMnO3 orthorhombic stable phase: an experimental and theoretical investigation. Mater Res Express 5:116103

    Article  Google Scholar 

  31. Tariq S, Jamil MI, Sharif A, Ramay SM, Ahmad H, Qamar N, Tahir B (2018) Exploring structural, electronic and thermo-elastic properties of metallic AMoO3 (A= Pb, Ba, Sr) molybdates. Appl Phys A 124:44

    Article  Google Scholar 

  32. Hao Y-J, Chen X-R, Cui H-L, Bai Y-L (2006) First-principles calculations of elastic constants of c-BN. Physica B 382:118–122

    Article  CAS  Google Scholar 

  33. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131

    Article  CAS  Google Scholar 

Download references

Funding

No funding is received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AAM presented the main idea and wrote optical and electronic properties. WIEN2k calculations, phonon analysis, and mechanical properties sections done by ST and BK. Manuscript writes up, introduction sections, and structural properties were written and organized by AOA. English correction of the manuscript and write up of electronic properties and figures correction were organized by FH.

Corresponding author

Correspondence to Saad Tariq.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, S., Mubarak, A.A., Alrashdi, A.O. et al. Deciphering the impact of pressure on the electronic, mechanical, and structural properties of PrMnO3 through density functional theory analysis. Transit Met Chem 49, 1–10 (2024). https://doi.org/10.1007/s11243-023-00540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00540-z

Navigation