Skip to main content
Log in

η3-allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl-coumarin esters

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A series of 2-, 3- and 4-pyridylmethyl-coumarin esters ligands (1–3) and their η3-allyl palladium complexes (1-Pd–3-Pd) have been designed, synthetized, and characterized. NMR analysis of compounds 1-Pd–3-Pd indicated the presence of the allyl fragment. The molecular structures of 2, 3 and 1-Pd were determined by X-ray crystallographic analysis. The molecular structure of 1-Pd reveals that coumarin ligand (2) is coordinated to the palladium center via a monodentate fashion through the nitrogen atom of the pyridinyl fragment while, the allyl group is binding via a η3 fashion in an overall square-planar geometry completed with a chloride atom. The crystal packing is stabilized by a variety of weak intermolecular conventional and non-conventional interactions involving C–H–O/N hydrogen bonds, ππ and C–H–π interactions, which have been analyzed by Hirshfeld surface and non-covalent interactions analysis. The intermolecular interaction energies were explored using an energy framework analysis, which revealed that ππ and C–H–π interactions serve as the primary building blocks in these crystal packing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexopoulos S, Gkouskou A, Stravodimos G, Tsagkarakou AS, Tsialtas I, Katounis D, Psarra A-MG, Leonidas D, Brahmachari G, Hayes JM, Skamnaki V (2022) The druggability of the ATP binding site of glycogen phosphorylase kinase probed by coumarin analogues. Curr Res Chem Biol 2:100022. https://doi.org/10.1016/j.crchbi.2022.100022

    Article  CAS  Google Scholar 

  2. Patil SB (2022) Medicinal significance of novel coumarin analogs: recent studies. Results Chem 4:100313. https://doi.org/10.1016/j.rechem.2022.100313

    Article  CAS  Google Scholar 

  3. Akki M, Reddy DS, Katagi KS, Kumar A, Devarajegowda HC, Kumari S, Babagond V, Mane S, Joshi SD (2022) Synthesis of coumarin-thioether conjugates as potential anti-tubercular agents: their molecular docking and X-ray crystal studies. J Mol Struct 1266:133452. https://doi.org/10.1016/j.molstruc.2022.133452

    Article  CAS  Google Scholar 

  4. Rawat A, Bhaskar Reddy AV (2022) Recent advances on anticancer activity of coumarin derivatives. Eur J Med Chem Rep 5:100038. https://doi.org/10.1016/j.ejmcr.2022.100038

    Article  CAS  Google Scholar 

  5. Reddy DS, Kongot M, Kumar A (2021) Coumarin hybrid derivatives as promoising leads to treat tuberculosis: recent developments and critical aspects of structural design to exhibit ant-tubercular activity. Tuberculosis 127:102050. https://doi.org/10.1016/j.tube.2020.102050

    Article  CAS  PubMed  Google Scholar 

  6. Ostotrowska K (2020) Coumarin-piperize derivatives as biologically active compounds. Saudi Pharm J 28:220. https://doi.org/10.1016/j.jsps.2019.11.025

    Article  CAS  Google Scholar 

  7. Arraché Gonçalvez G, Ronchi Spillere A, das Neves GM, Porto Kagami L, von Poser GL, Santos Canto RF, Eifler-Lima VL (2020) Natural and synthetic coumarins as antileishmanial agents: a review. Eur J Med Chem 203:112514. https://doi.org/10.1016/j.ejmech.2020.112514

    Article  CAS  Google Scholar 

  8. Al-Warhi T, Sabt A, Elkaeed EB, Eldehna WM (2020) Recent advancements of coumarin-based anticancer agents: an up-to-date review. Bioorg Chem 103:104163. https://doi.org/10.1016/j.bioorg.2020.104163

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Kong D, Liu Y, Li M (2022) Pharmacological perspectives and molecular mechanisms of coumari derivatives against virus disease. Genes Dieses 9:80–94. https://doi.org/10.1016/j.gendis.2021.03.007

    Article  CAS  Google Scholar 

  10. Pršir K, Horak E, Kralj M, Uzelac L, Liekens S, Murković Steinberg I, Krištafor S (2022) Design, synthesis, spectroscopic characterization and in vitro cytostatic evaluation of novel bis(coumarin-1,2,3-triazolyl)benzenes and hybrid coumarin-1,2,3-tiazolyl-aryl derivatives. Molecules. 27:637. https://doi.org/10.3390/molecules27030637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arya CG, Gondru R, Li Y, Banothu J (2022) Coumarin-benzimidazole hibrids: a review of developments in medical chemistry. Eur J Med Chem 227:113921. https://doi.org/10.1016/j.ejmech.2021.113921

    Article  CAS  Google Scholar 

  12. Serdyukov A, Kosenko I, Druzina A, Grin M, Mironov AF, Bregadze VI, Laskova J (2021) Anionic polyhedral boron clusters conjugates with 7-dietylamino-4-hydroxicoumarin. Synthesis and lipophilicity. J Organomet Chem. 946–947:121905. https://doi.org/10.1016/j.jorganchem.2021.121905

    Article  CAS  Google Scholar 

  13. Pranhala P, Sutar SM, Savanur HM, Jshi SD, Kalkhambkar RG (2022) In vitro antimicrobial combat, molecular modelling and structure activity relationship studies of novel class of aryl-ethyne tethered coumarin analogues and some 3-aryl coumarin derivates. Eur J Med Chem Rep 5:100048. https://doi.org/10.1016/j.ejmcr.2022.100048

    Article  CAS  Google Scholar 

  14. Yadav S, Singh S, Gupta C (2022) Envriromental benign synthesis of some novel biologically active 7-hydroxy-4-methyl coumarin derivatives. Curr Res Green Sustain Chem 5:100260. https://doi.org/10.1016/j.crgsc.2022.100260

    Article  CAS  Google Scholar 

  15. Dorababu A (2021) Coumarin-heterocycle framework: a privileged approach in promising anticancer drug design. Eur J Med Chem Rep 2:100006. https://doi.org/10.1016/j.ejmcr.2021.100006

    Article  CAS  Google Scholar 

  16. Patel M, Pandey N, Timaniya J, Parikh P, Chauhan A, Jain N, Patel K (2021) Coumarin-carbazole based functionalized pyrazolines: synthesis, characterization, anticancer investigation and molecular docking. RSC Adv 11:27627. https://doi.org/10.1039/D1RA03970A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-Amiery AA, Al-Majedy YK, Kadhum AAH, Mohamad AB (2015) New coumarin derivative as an eco-friendly inhibitor of corrosion of mild steel in acid medium. Molecules 20(1):366. https://doi.org/10.3390/molecules20010366

    Article  CAS  Google Scholar 

  18. Mahalakshmi D, Hemapriya V, Subramaniam EP, Chitra S (2019) Synergistic effect of antibiotics on the inhibition property of aminothiazolyl coumarin for corrosion of mild steel in 0.5 M H2SO4. J Mol Liq 284:316. https://doi.org/10.1016/j.molliq.2019.03.158

    Article  CAS  Google Scholar 

  19. Khowdiary MM, Taha NA, Barqawi AA, Elhenawy AA, Sheta M, Hassan N (2022) Theoretical and experimental evaluation of the anticorrosion properties of new Coumarin’s derivatives. Alex Eng J 61:6937. https://doi.org/10.1016/j.aej.2021.12.037

    Article  Google Scholar 

  20. Tang H, Sun J, Su D, Huang Y, Wu P (2021) Coumarin as a green inhibitor of chloride-induced aluminum corrosion: theoretical calculation and experimental exploration. RCS Adv 11:24926. https://doi.org/10.1039/D1RA02622D

    Article  CAS  Google Scholar 

  21. Hua C-J, Niu W-J, Li Y-J (2022) Optical property investigations of coumarin and indene diketone structure dyes: experiment and calculation. Results Chem 4:100257. https://doi.org/10.1016/j.rechem.2021.100257

    Article  CAS  Google Scholar 

  22. Zhou Z, Niu W, Lin Z, Cui Y, Tang X, Li Y (2020) A novel “turn-off” fluorescent sensor for Al3+ detection based on quinolinecarboxamide-coumarin. Inorg Chem Commun 121:108168. https://doi.org/10.1016/j.inoche.2020.108168

    Article  CAS  Google Scholar 

  23. Shen W, Zheng J, Zhou Z, Zhang D (2020) Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjagates and their biomedical applications. Acta Biomater 11(5):75. https://doi.org/10.1016/j.actbio.2020.08.024

    Article  CAS  Google Scholar 

  24. Rahal M, Graff B, Toufaily J, Hamieh T, Dumur F, Lalevée J (2021) Design of keto-coumarin based photoinitiator for free radical photopolymerization: towards 3D printing and photocomposites applications. Eur Polym J 154:110559. https://doi.org/10.1016/j.eurpolymj.2021.110559

    Article  CAS  Google Scholar 

  25. Grazul M, Budzisz E (2009) Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord Chem Rev 253:2588. https://doi.org/10.1016/j.ccr.2009.06.015

    Article  CAS  Google Scholar 

  26. Xu J, Bai Y, Ma Q, Sun J, Tian M, Li L, Zhu N, Liu S (2022) Ratiometric determination of nitroxyl utilizing a novel fluorescence resonance energy transfer-based fluorescent probe based on a coumarin-rhodol derivative. ACS Omega 7:5264. https://doi.org/10.1021/acsomega.1c06403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kandemir E, Özkütük M, Aydiner B, Seferoğlu N, Erer H, Seferoğlu Z (2022) Novel fluorescent coumarin-thiazole based sensors for selective determination of cyanide in aqueos media. J Mol Struct 1249:131593. https://doi.org/10.1016/j.molstruc.2021.131593

    Article  CAS  Google Scholar 

  28. Padhan SK, Mishra VK, Murmu N, Mishra S, Sahu SN (2020) Throuhg bond energy transfer (TBET)-operated fluoride ion sensing via spirolactam ring opening of a coumarin-fluorescein bichromophoric dyad. RSC Adv 10:28422. https://doi.org/10.1039/D0RA05357K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balcioğlu S, Karataş MO, Ateş C, Alici B, Özdemir I (2020) Therapeutic potencial of coumarin beraing metal complexes: we are we headed? Biorgan Med Chem Lett 10:126805. https://doi.org/10.1016/j.bmcl.2019.126805

    Article  CAS  Google Scholar 

  30. Georgieva I, Mihaylov T, Trendafilova N (2014) Lanthanide and transition metal complexes of bioactive coumarins: molecular modeling and spectroscopic studies. J Inorg Biochem 135:100. https://doi.org/10.1016/j.jinorgbio.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  31. Gautam A, Shahini CR, Siddappa AP, Grzegorz MJ, Hemavathi B, Ahipa TH, Srinivasa B (2021) Palladium(II) complexes of coumarin substitud 1,2,4-triazol-5-ylidenes for catalytic C-C cross-coupling and C–H activation reactions. J Organomet Chem 934:121540. https://doi.org/10.1016/j.jorganchem.2020.121540

    Article  CAS  Google Scholar 

  32. Fatykhov RF, Sharapov AD, Starnovskaya ES, Shtaitz YK, Savchuk MI, Kopchuck DS, Nikonov IL, Zyryanov GV, Khalymbadzha IA, Chupakhin ON (2022) Coumarin-pyridine push-pull fluorophores: synthesis and photophysical studies. Spectrochim Acta Part A Mol Biomol Spectrosc 267:120499. https://doi.org/10.1016/j.saa.2021.120499

    Article  CAS  Google Scholar 

  33. Singh H, Srredharan S, Tiwari R, Walther C, Smyte C, Pramanik SK, Thomas JA, Das A (2018) A fluorescent chemodosimeter for organell-specific imaging of nucleoside polyphosphate dynamics in living cells. Cryst Growth Des 18:7199. https://doi.org/10.1021/acs.cgd.8b01409

    Article  CAS  Google Scholar 

  34. Liu J, Yue X, Wang Z, Zhang X, Xu Y (2020) Coumarin 7 funtionalized europium-based metal-organic-framework luminescent composites for dual-mode optical thermometry. J Mater Chem C 8:13328. https://doi.org/10.1039/D0TC03365K

    Article  CAS  Google Scholar 

  35. Singh DK, Nath M (2015) Synthesis and photophysical properties of β-triazole brigded porphyrin-coumarin dyads. RSC Adv 5:68209. https://doi.org/10.1039/C5RA13955D

    Article  CAS  Google Scholar 

  36. Arauzo A, Gasque L, Fuertes S, Tenorio C, Bernés S, Bartolomé E (2020) Coumarin-lanthanide based compounds with SMM behavior and high quantum yield luminescence. Dalton Trans 49:13671. https://doi.org/10.1039/D0DT02614J

    Article  CAS  PubMed  Google Scholar 

  37. Olgun Kartaş M, Calgin G, Alici B, Gökçe B, Gençer N, Tok T, Arslan O, Kiliç-Cikla I, Özdemir N (2019) Inhibition of paraoxonase 1 by coumarin-sustitutes N-hetercyclic carbene silver(I), ruthenium(II) ana dalladium(II) complexes. Appl Organomet Chem 33:5130. https://doi.org/10.1002/aoc.5130

    Article  CAS  Google Scholar 

  38. Balić T, Perdih F, Poćkaj M, Molnar M, Komar M, Balić I (2021) Polymorphism of coumarin thiona-triazole-4-methyl-7-[(4-phenyl-5-thioxo-4,5-dihydro-1H, 1,2,4, triazol-3-yl)methoxy]2Hchromen-2-one. J Mol Struct 1231:129957. https://doi.org/10.1016/j.molstruc.2021.129957

    Article  CAS  Google Scholar 

  39. Kumar Seth S, Sarkar D, Dipankar Jana A, Kar T (2011) On the possibility of tuning molecular edges to direct supramolecular self-assembly in coumarin derivatives through cooperative weak forces: crystallographic and Hirsfeld surface analyses. Cryst Growth Des 11:4837. https://doi.org/10.1021/cg2006343

    Article  CAS  Google Scholar 

  40. García-Báez EV, Martínez-Marínez FJ, Höpfl H, Padilla-Martínez II (2003) Π-stacking interactions and C–H–X (X = O, aryl) hydrogen bonding as directing features of the supramolecular self-association in 3-carbocy and 3-amido coumarin derivatives. Cryst Growth Des 3:35. https://doi.org/10.1021/cg0255826

    Article  CAS  Google Scholar 

  41. Kasperkiewicz K, Malecka M, Ponczek MB, Nowak P, Budzisz E (2016) Design synthesis, X-ray structures of new coumarin derivatives and prespectives of binding them to albumin and vitamin K Epoxide reductase complex subunit 1. Cryst Growth Des 16:456. https://doi.org/10.1021/acs.cgd.5b01456

    Article  CAS  Google Scholar 

  42. Hosamami KM, Reddy DS, Devarajegowda HC, Kurjogi MM (2015) A facile synthesis and evoluation of new biomolecule-based coumarin-thiazoline hybrids as potent anti-tubercular agents their cytotoxicity, DNA cleavage and X-ray studies. RSC Adv 5:64566–64581. https://doi.org/10.1039/C5RA09508E

    Article  CAS  Google Scholar 

  43. Shishkina SV, Konovalova IS, Kovalenko SM, Trostianko PV, Geleverya AO, Bunyatyan ND (2019) Hydrogen bonding vs. stacking interaction in the crystals of the simplest coumarin derivatives: a study from the energetic viewpoint. Cryst Eng Commun 21:6945. https://doi.org/10.1039/C9CE01344J

    Article  CAS  Google Scholar 

  44. González-Montiel S, Baca-Téllez S, Martínez-Otero D (2015) Construction of 18-membered monometallic macrocycles by a trans-spanning ligand. Polyhedron 92:22–29. https://doi.org/10.1016/j.poly.2015.02.013

    Article  CAS  Google Scholar 

  45. Altaf M, Wang Y, Socorro IM, Stoeckli-Evans H (2012) Ortho-, meta-, and para-pyridyl oximinoacetoacetates andsilver(I)-oximinoacetoacetate networks: synthesis and X-ray crystallographic analyses. Inorg Chim Acta 383:204. https://doi.org/10.1016/j.ica.2011.11.010

    Article  CAS  Google Scholar 

  46. Noamane MH, Ferlay S, Abidi R, Kyritsakasa N, Hosseini MW (2017) Synthesis of para- and meta-imino- or -amino-methyl pyridyl-appended p-tert-butyl-calix[4]arene or p-tert-butyl-thiacalix[4]arene in 1,3-alternate conformation. New J Chem 41:6334. https://doi.org/10.1039/C7NJ01389B

    Article  CAS  Google Scholar 

  47. Valdez-Calderón A, González-Montiel S, Martínez-Otero D, Martínez-Torres A, Vásquez-Pérez JM, Molina-Vera C, Torres-Valencia JM, Alvarado-Rodríguez JG, Cruz-Borbolla J (2016) Synthesis, structural study and biological activity of new derivatives of chrysin containing a 2-mercaptopyridyl or 5-(trifluoromethyl)-2-mercaptopyridyl fragments. J Mol Struct 1110:196. https://doi.org/10.1016/j.molstruc.2016.01.055

    Article  CAS  Google Scholar 

  48. Rendón-Nava D, Mendoza-Espinosa D, Negrón-Silva GE, Téllez-Arreola JL, Martínez-Torres A, Valdez-Calderón A, González-Montiel S (2017) Chrysin functionalized NHC–Au(I) complexes: synthesis, characterization and effects on the nematode Caenorhabditis elegans. New J Chem 41:2013. https://doi.org/10.1039/C6NJ03299K

    Article  CAS  Google Scholar 

  49. González-Montiel S, Valdez-Calderón A, Vásquez-Pérez JM, Torres-Valencia JM, Martínez-Otero D, López JA, Cruz-Borbolla J (2017) Palladium(II) complexes bearing di-(2-picolyl)amine functionalized chrysin fragments. An experimental and theoretical study. J Mol Struct 1145:112. https://doi.org/10.1016/j.molstruc.2017.05.076

    Article  CAS  Google Scholar 

  50. Ruiz-Mendoza FJ, Mendoza-Espinosa D, González-Montiel S (2018) Synthesis and catalytic activity of coumarin- and chrysin-tethered triazolylidene gold(I) complexes. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201800921

    Article  Google Scholar 

  51. Oxford Diffraction CrysAlis software system, version 1.171.37.35. Oxford Diffraction Ltd., Abingon, UK (2014)

  52. Sheldrick GM (2015) SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr Sect A 71:3. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  53. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A 64:112. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  54. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  55. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia

  56. Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, Spackman MA (2021) CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr 54:1006. https://doi.org/10.1107/S1600576721002910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jayatilaka D, Grimwood DJ (2003) Tonto: a fortran based object-oriented system for quantum chemistry and crystallography. In: Sloot PMA, Abramson D, Bogdanov AV, Gorbachev YE, Dongarra JJ, Zomaya AY (eds) Computational science—ICCS 2003 ICCS 2003, vol 142. Lecture Notes in Computer Science 2660. Springer, Berlin

    Google Scholar 

  58. Mackenzie CF, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer model energies and energy frame-works: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ 44:575–587. https://doi.org/10.1107/S205225251700848X

    Article  Google Scholar 

  59. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc., Wallingford, Gaussian 09, Revision A.02

  60. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  61. Scattolin T, Pessotto I, Cavarzerani E, Canzonieri V, Orian L, Demitri N, Schmidt C, Casini A, Bortolamiol E, Visentin F, Rizzolio F, Nola SP (2022) Indenyl and allyl palladate complexes bearing N-heterocyclic carbene ligands: an easily accessible class of new anticancer drug candidates. Eur J Inorg Chem. https://doi.org/10.1002/ejic.202200103

    Article  Google Scholar 

  62. Lindley J (1980) Allyl palladium complexes. A simple experiment illustrating fluxional behavior. J Chem Educ 57:671. https://doi.org/10.1021/ed057p671

    Article  CAS  Google Scholar 

  63. Scattolin T, Piccin A, Maucer M, Rozzolio F, Demitry N, Canzonieri V, Visentin F (2021) Synthesis, characterization and anticancer activity of palladium allyl complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands. Polyhedron 207:115381. https://doi.org/10.1016/j.poly.2021.115381

    Article  CAS  Google Scholar 

  64. Bettucci L, Bianchini C, Filipi J, Lavacchi A, Oberhauser W (2011) Chemolective aerobic diol oxidation by palladium(II)-pyridine catalysis. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201001300

    Article  Google Scholar 

  65. Scattolin T, Bortolamiol E, Rizzolio F, Demitri N, Visentin F (2020) Ally palladium complexes beraing carbohydrate-based N-heteocyclic carbenes: anticancer agentes for selective and potent in vitro cytotocity. Appl Organomet Chem 34:e5876. https://doi.org/10.1002/aoc.5876

    Article  CAS  Google Scholar 

  66. Alvarez-Hernández J-A, Andrade-López N, Alvarado-Rodríguez JG, González-Montiel S, Zarate-Hernández LÁ, Cruz-Borbolla J (2022) Synthesis and characterization of organopalladium(II) complexes of N, N, S–tridentate sulfur-containing Schiff bases derived from 2-(2-pyridyl) benzothiazolines. Polyhedron 214:115635. https://doi.org/10.1016/j.poly.2021.115635

    Article  CAS  Google Scholar 

  67. Desiraju GR, Steiner T (2001) The weak hydrogen bond. In: Structural Chemistry and Biology. International Union of Crystallography Monographs on Crystallography, Oxford

  68. Tiekink ERT, Zukerman-Schpector J (2012) The importance of pi-interactions in crystal engineering: frontiers in crystal engineering. Wiley, UK

    Book  Google Scholar 

  69. Mooibroek TJ, Gamez P, Reedijk J (2008) Lone pair–π interactions: a new supramolecular bond? Cryst Eng Commun 10:1501. https://doi.org/10.1039/B812026A

    Article  CAS  Google Scholar 

  70. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew Chem Int Ed 34:1555. https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  71. Dufresne S, Bolduc A, Skene WG (2011) Diethyl 2,5-bis[(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-5-yl)methylideneamino]thio-phene-3,4-dicarboxylate acetone monosolvate. Acta Crystallogr Sect E 67:o3138. https://doi.org/10.1107/S160053681104339X

    Article  CAS  Google Scholar 

  72. Zhou T, Jia T, Zhao S, Guo J, Zhang H, Wang Y (2012) Acid-stimuli-luminescence and carbonyl-proton interaction dependent emission properties of 2,6-biphenyl-4-pyrone crystals. Cryst Growth Des 12:179. https://doi.org/10.1021/cg200920d

    Article  CAS  Google Scholar 

  73. Pal S, Konkimalla VB, Kathawate L, Rao SS, Gejji SP, Puranik VG, Weyhermuller T, Salunke-Gawali S (2015) Targeting a chemorefractory COLO205 (BRAF V600E) cell line using substituted benzo[a]phenoxazines. RSC Adv 5:82549. https://doi.org/10.1039/C5RA14949E

    Article  CAS  Google Scholar 

  74. Pérez Guarín SA, Tsang D, Skene WG (2007) Spectroscopic studies of a fluorescent fluoresceinophane formed via a practical synthetic route. New J Chem 31:210. https://doi.org/10.1039/B611060F

    Article  Google Scholar 

  75. Xiao Y, Zhou L, Hao H, Bao Y, Yin Q, Xie C (2021) Cocrystals of propylthiouracil and nutraceuticals toward sustained-release: design, structure analysis, and solid-state characterization. Cryst Growth Des 21:1202. https://doi.org/10.1021/acs.cgd.0c01519

    Article  CAS  Google Scholar 

  76. Gangadharan R, Haribabu J, Karvembub R, Sethusankarc K (2015) Crystal structures of two hydrazinecarbothioamide derivatives: (E)-N-ethyl-2-[(4-oxo-4H-chromen-3-yl)methylidene]hydrazinecarbothioamide hemi-hydrate and (E)-2-[(4-chloro-2H-chromen-3-yl)-methylidene]-N-phenylhydrazinecarbothioamide. Acta Crystallogr Sect E Crystallogr Commun 71:305. https://doi.org/10.1107/S2056989015003369

    Article  CAS  Google Scholar 

  77. McKinnon JJ, Mitchell AS, Spackmann MA (1998) Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem A Eur J 4:2136. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11%3c2136::AID-CHEM2136%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  78. McKinnon JJ, Spackman MA, Mitchell AS (2004) Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 60:627. https://doi.org/10.1107/S0108768104020300

    Article  CAS  Google Scholar 

  79. Spackman MA, McKinnon JJ (2002) Fingerprinting intermolecular interactions in molecular crystals. Cryst Eng Commun 4:378. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  80. Turner MJ, Thomas SP, Shi MW, Jayatilaka D, Spackman MA (2015) Energy frameworks: insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem Commun 51:3735. https://doi.org/10.1039/C4CC09074H

    Article  CAS  Google Scholar 

  81. Dey D, Bhandary S, Thomas SP, Spackman MA, Chopra D (2016) Energy frameworks and a topological analysis of the supramolecular features in in situ cryocrystallized liquids: tuning the weak interaction landscape via fluorination. Phys Chem Chem Phys 18:31811. https://doi.org/10.1039/C6CP05917A

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Universidad Autónoma del Estado de Hidalgo (Grant: UAEH-DIDI-DI-ICBI-QUI-22-004) to SG-M.

Author information

Authors and Affiliations

Authors

Contributions

SG-M contributed to the validation, formal analysis, data curation, methodology, supervision-lead, writing—review and editing, visualization, conceptualization and resources; RV-J was involved in the validation, formal analysis, data curation and methodology; RS-P assisted in the validation, formal analysis and data curation; WF-S contributed to the methodology and supporting; DM-O was involved in the formal analysis and data curation; NA-L contributed to supporting and formal analysis; VS-P was involved in supporting and formal analysis; JC-B contributed to the validation, formal analysis and data curation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Simplicio González-Montiel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

Conflict of interest declared none.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14699 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Montiel, S., Velázquez-Jiménez, R., Segovia-Pérez, R. et al. η3-allyl-Pd(II) complexes of 2-, 3- and 4-pyridylmethyl-coumarin esters. Transit Met Chem 48, 21–36 (2023). https://doi.org/10.1007/s11243-022-00518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-022-00518-3

Navigation