Skip to main content
Log in

A Sensitivity Study of the Effect of Image Resolution on Predicted Petrophysical Properties

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Micro-CT scanning is a nondestructive technique that can provide three-dimensional images of rock pore structure at a resolution of a few microns. We compute petrophysical properties on three-dimensional images of benchmark rocks: two sandstones (Berea and Doddington) and two limestones (Estaillades and Ketton). We take scans at a voxel size of approximately 2.7 \(\upmu \hbox {m}\) and with \(1024^3\) voxels for both sandstone and limestone rocks. We numerically upscale the images to image sizes of \(512^3, 256^3\) and \(128^3\), representing voxel sizes of around 5.4, 10.8, and 21.6 \(\upmu \hbox {m}\) respectively, covering the same domains with coarser resolution. We calculate porosity and permeability on these images by using direct simulation and by extracting geometrical equivalent networks. We find that the predicted porosity is fairly insensitive to resolution for sandstones studied with the selected range of resolutions but sensitive for limestones with lower porosity for larger voxel sizes. For the permeability predictions, we do not observe a clear trend in permeability as a function of voxel size; however, sandstones, roughly, have comparable permeability regardless of the voxel size. On the other hand, for limestones, we generally see a decreasing trend in permeability as a function of upscaled voxel size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The images used in this study can be downloaded from http://www.imperial.ac.uk/engineering/departments/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/ .

References

  • Al-Kharusi, A.S., Blunt, M.J.: Network extraction from sandstone and carbonate pore space images. J. Petrol. Sci. Eng. 56, 219–231 (2007)

    Article  Google Scholar 

  • Alyafei, N., Gharbi, O., Raeini, A.Q., Yang, J., Iglauer, S., Blunt, M.J.: Influence of micro-computed tomography image resolution on the predictions of petrophysical properties. In: International Petroleum Technology Conference (2013)

  • Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Garboczi, E.J.: Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5), 1396–1405 (2002)

    Article  Google Scholar 

  • Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sok, R.M., Pinczewski, W.V., Bakke, S., Berge, L.I., Øren, P., Knackstedt, M.A.: Pore scale characterization of carbonates using X-ray microtomography. SPE J. 10(4), 1–10 (2005)

    Article  Google Scholar 

  • Ashton, M.: The stratigraphy of the Lincolnshire Limestone Formation (Bajocian) in Lincolnshire and Rutland (Leicestershire). Proc. Geol. Assoc. 91, 203–223 (1980)

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Article  Google Scholar 

  • Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 036307 (2009)

    Article  Google Scholar 

  • Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8), 1016–1022 (1979)

    Article  Google Scholar 

  • Dunsmuir, J.H., Ferguson, S.R., D’Amico, K.L., Stokes, J.P.: X-ray microtomography: a new tool for the characterization of porous media. In: SPE Annual Technical Conference and Exhibition (1991)

  • Dullien, F.A.L.: Porous Media. Fluid Transport and Pore Structure. Academic, San Diego (1992)

    Google Scholar 

  • Gerbaux, O., Buyens, F., Mourzenko, V.V., Memponteil, A., Vabre, A., Thovert, J.-F., Adler, P.M.: Transport properties of real metallic foams. J. Colloid Interface Sci. 342, 155–165 (2010)

    Article  Google Scholar 

  • Iglauer, S., Paluszny, A., Pentland, C.H., Blunt, M.J.: Residual \(CO_2\) imaged with X-ray micro-tomography. Geophys. Res. Lett. 38(21), L21403 (2011)

  • Iglauer, S., Paluszny, A., Blunt, M.J.: Simultaneous oil recovery and residual gas storage: a pore-level analysis using in situ X-ray micro-tomography. Fuel 103, 905–914 (2013)

    Article  Google Scholar 

  • Keemhm, Y., Mukerji, T.: Permeability and relative permeability from digital rocks: Issues on grid resolution and representative elementary volume. In: Society of Exploration Geophysicists (2004)

  • Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A 24(7), 593–599 (1999)

    Article  Google Scholar 

  • Mostaghimi, P., Bijeljic, B., Blunt, M.J.: Simulation of flow and dispersion on pore-space images. SPE J. 17(4), 1131–1141 (2012)

    Article  Google Scholar 

  • Münch, B., Trtik, P., Marone, F., Stampanoni, M.: Stripe and ring artefact removal with combined wavelet—Fourier filtering. Opt. Express 17(10), 8567–8591 (2009)

    Article  Google Scholar 

  • Øren, P., Bakke, S.: Process based reconstruction of sandstones and prediction of transport properties. Transp. Porous Media 46(2–3), 311–343 (2002)

    Article  Google Scholar 

  • Otsu, N.: An automatic threshold selection method based on discriminate and least squares criteria. Denshi Tsushin Gakkai Ronbunshi 63, 349–356 (1979)

    Google Scholar 

  • Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using X-ray computed tomography in pore structure characterization for a berea sandstone: resolution effect. J. Hydrol. 472, 254–261 (2012)

    Article  Google Scholar 

  • Pepper, J.F., de Witt, W., Demarest, D.F.: Geology of the Bedford Shale and Berea Sandstone in the Appalachian basin. U.S. Geological Survey (1954)

  • Raeini, A.Q., Bijeljic, B., Blunt, M.J.: Numerical modelling of sub-pore scale events in two-phase flow through porous media. Transp. Porous Media 101(2), 191–213 (2014)

    Article  Google Scholar 

  • Ramstad, T., Idowu, N., Nardi, C., Øren, P.E.: Relative permeability calculations from two-phase flow simulations directly on digital images of porous rocks. Transp. Porous Media 94(2), 487–504 (2012)

    Article  Google Scholar 

  • Ryazanov, A.V., van Dijke, M.I.J., Sorbie, K.S.: Two-phase pore-network modelling: existence of oil layers during water invasion. Transp. Porous Media 80(1), 79–99 (2009)

    Article  Google Scholar 

  • Santarelli, F.J., Brown, E.T.: Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 26(5), 401–413 (1989)

    Article  Google Scholar 

  • Silin, D.B., Jin, G., Patzek, T.W.: Robust determination of pore space morphology in sedimentary rocks. In: SPE Annual Technical Conference and Exhibition (2003)

  • Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M.: Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett. 73(14), 2001–2004 (1994)

    Article  Google Scholar 

  • Tanino, Y., Blunt, M.J.: Capillary trapping in sandstones and carbonates: dependence on pore structure. Water Resour. Res. 48(8), W08525 (2012)

    Google Scholar 

  • Thovert, J.-F., Yousefian, F., Spanne, P., Jacquin, G.G., Adler, P.M.: Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. Phys. Rev. E 63, 061307 (2001)

    Article  Google Scholar 

  • Tschumperlé, D., Deriche, R.: Vector-valued image regularization with PDE’s: a common framework for different applications. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 506–517 (2005)

    Article  Google Scholar 

  • Valvatne, P.H., Blunt, M.J.: Predictive pore-scale modeling of two-phase flow in mixed wet media. Water Resour. Res. 40(7), W07406 (2004)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Wildenschild, D., Vaz, C.M.P., Rivers, M.L., Rikard, D., Christensen, B.S.B.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3), 285–297 (2002)

    Article  Google Scholar 

  • Wildenschild, D., Hopmans, J.W., Rivers, M.L., Kent, A.J.R.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)

    Article  Google Scholar 

  • Wright, V.P., Platt, N.H., Marriott, S.B., Beck, V.H.: A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sed. Geol. 100, 143–158 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge funding from the Qatar Carbonates and Carbon Storage Research Centre, QCCSRC, which is supported jointly by Qatar Petroleum, Shell and the Qatar Science and Technology Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nayef Alyafei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alyafei, N., Raeini, A.Q., Paluszny, A. et al. A Sensitivity Study of the Effect of Image Resolution on Predicted Petrophysical Properties. Transp Porous Med 110, 157–169 (2015). https://doi.org/10.1007/s11242-015-0563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0563-0

Keywords

Navigation