Skip to main content
Log in

Unstructured Grid Generation in Porous Domains for Flow Simulations with Discrete-Fracture Network Model

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, an unstructured grid generation algorithm is presented to produce two- and three-dimensional grids in porous media with networks of discrete fractures. The proposed grid generation algorithm considers underground contours map data to adapt unstructured grids to geological geometries. This allows construction of more realistic geometrical models. Sample two- and three-dimensional unstructured grids have been generated in complex porous media with seven intersecting fractures. Two-dimensional grids were generated within 0.17–2.37 s of CPU time. Generation of three-dimensional grids including grid quality improvement measures took 109 s of CPU time. This final grid contains 763 fracture cells and 49, 403 matrix cells. Angle distribution histograms of the three-dimensional grids show no skewed and flat angles within fracture and matrix cells. Two- and three-dimensional computational unstructured grids have been generated for geometries similar to published fractured porous media test cases. Incompressible and immiscible water–oil flow simulations were then obtained using these computational grids. Simulations gave identical results with published data which confirms the computational feature of the proposed unstructured grid generation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bahrainian, S.S.: Construction of hexahedral block topology and its decomposition to generate initial tetrahedral grids for aerodynamics applications. J. Aerosp. Sci. Technol. 5, 81–90 (2008)

    Google Scholar 

  • Bahrainian, S.S., Mehrdoost, Z.: An automatic unstructured grid generation method for viscous flow simulations. Math. Comput. Simul. 83, 23–43 (2012)

    Article  Google Scholar 

  • Baker, T.J.: Three dimensional mesh generation by triangulation of arbitrary point sets. AIAA paper 87-1124 (1987)

  • Blessent, D., Therrien, R., MacQuarrie, K.: Coupling geological and numerical models to simulate groundwater flow and contaminant transport in fractured media. Comput. Geosci. 35, 1897–1906 (2009)

    Article  Google Scholar 

  • Blöcher, M.G., Cacace, M., Lewerenz, B., Zimmermann, G.: Three dimensional modelling of fractured and faulted reservoirs: framework and implementation. Cheme der Erde 70, 145–173 (2010)

    Article  Google Scholar 

  • Bowyer, A.: Computing dirichlet tessellations. Comput. J. 24, 162–166 (1981)

    Article  Google Scholar 

  • Caumon, G., Lévy, B., Castanié, L., Paul, J.C.: Visualization of grids conforming to geological structures: a topological approach. Comput. Geosci. 31, 671–680 (2005)

    Article  Google Scholar 

  • Delaunay, B.: Sur la sphere vide. Math. Nat. Sci. Div. 6, 793–800 (1934)

    Google Scholar 

  • Frey, P.J., Borouchaki, H., George, P.L.: 3D delaunay mesh generation coupled with an advancing-front approach. Comput. Method Appl. M. 157, 115–131 (1998)

    Article  Google Scholar 

  • Gable, C.W., Trease, H.E., Cherry, T.A.: Geological applications of automatic grid generation tools for finite elements applied to porous flow modeling. In: Soni, B.K., Thompson, J.F., Hausser, H., Eiseman, P.R. (eds.) Proceedings of numerical grid generation in computational fluid dynamics and related fields. Engineering Research Center, Mississippi State University Press (1996)

    Google Scholar 

  • Hægland, H., Assteerawatt, A., Dahle, H.K., Eigestad, G.T., Helmig, R.: Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system. Adv. Water Resour. 32, 1740–1755 (2009)

    Article  Google Scholar 

  • Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31, 891–905 (2008)

    Article  Google Scholar 

  • Ito, Y., Shih, A.M., Soni, B.K.: Reliable isotropic tetrahedral mesh generation based on an advancing front method. The 13th IMR (2004)

  • Karimi-fard, M.: Modeling tools for fractured systems: gridding, discretization, and upscaling, Stanford University, Stanford. http://www.cees.stanford.edu/docs/KarimiFard13.pdf (2013)

  • Karimi-fard, M., Durlofsky, L.J., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9, 227–236 (2004)

    Article  Google Scholar 

  • Karimi-fard, M., Firoozabadi, A.: Numerical simulation of water injection in 2D fractured media using discrete-fracture model. In: Proceedings SPE annual technical conference and exhibition, SPE paper 71615, (2001)

  • Kim, J.G., Deo, M.D.: Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J. 46, 1120–1130 (2000)

    Article  Google Scholar 

  • Löhner, R., Parikh, P.: Three-dimensional grid generation by the advancing-front method. Int. J. Numer. Meth. Fl. 8, 1135–1149 (1988)

    Article  Google Scholar 

  • Mainguy, M., Coussy, O.: Propagation fronts during calcium leaching and chloride penetration. J. Eng. Mech. 126, 250–257 (2000)

  • Mainguy, M., Ulm, F.J.: Coupled diffusion-dissolution around a fracture channel: the solute congestion phenomenon. Trans. Porous Media. 80, 481–497 (2001)

    Google Scholar 

  • Mavripllis, F.: CFD in aerospace in the new millennium. Can. Aeronaut. Space J. 46, 167–176 (2000)

    Google Scholar 

  • Monteagudo, J.E.P., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resour. Res. 40, 1–20 (2004)

  • Mustapha, H.: G23FM: a tool for meshing complex geological media. Comput. Geosci. 15, 385–397 (2011)

    Article  Google Scholar 

  • Neumann, R., Bastian, P., Ippisch, O.: Modeling and simulation of two-phase two-component flow with disappearing nonwetting phase. Math. Comput. Simul. 81, 2001–2017 (2011)

    Article  Google Scholar 

  • Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 18, 588–596 (1982)

    Article  Google Scholar 

  • Pirzadeh, S.Z.: Unstructured grid generation for complex 3D high-lift configuration. SAE paper 1999-01-5557 (1999)

  • Prévost, M., Lepage, F., Durlofsky, L.J., Mallet, J.L.: Unstructured 3D gridding and upscaling for coarse modelling of geometrically complex reservoirs. Pet. Geosci. 11, 339–345 (2005)

    Article  Google Scholar 

  • Reichenberger, V., Jakobs, H., Bastian, P., Helmig, R.: A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29, 1020–1036 (2006)

    Article  Google Scholar 

  • Sahimi, M., Darvishi, R., Haghighi, M., Rasaei, M.R.: Upscaled unstructured computational grids for efficient simulation of flow in fractured porous media. Transp. Porous Med. 83, 195–218 (2010)

    Article  Google Scholar 

  • Scheiner, S., Hellmich, C.: Stable pitting corrosion of stainless steel as diffusion-controlled dissolution process with a sharp moving electrode boundary. Corros. Sci. 49, 319–346 (2007)

    Article  Google Scholar 

  • Scheiner, S., Hellmich, C.: Finite volume model for diffusion- and activation-controlled pitting corrosion of stainless steel. Comput. Methods Appl. Mech. Eng. 198, 2898–2910 (2009)

    Article  Google Scholar 

  • Tatomir, A.B., Szymkiewicz, A., Class, H., Helmig, R.: Modeling two phase flow in large scale fractured porous media with an extended multiple interacting continua method. Comput. Model. Eng. Sci. 77, 81–111 (2011)

    Google Scholar 

  • Watson, D.F.: Computing the n-dimensional tessellation with application to voronoi polytopes. Comput. J. 24, 167–172 (1981)

    Article  Google Scholar 

  • Weatherill, N.P.: The generation of unstructured grids using dirichlet tessellation. MAE report 1715 (1985)

  • Xing, H., Yu, W., Zhang, J.: 3D mesh generation in geocomputing, advances in geocomputing. Lecture notes in earth sciences 119, vol. 2. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Daneh Dezfuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrainian, S.S., Daneh Dezfuli, A. & Noghrehabadi, A. Unstructured Grid Generation in Porous Domains for Flow Simulations with Discrete-Fracture Network Model. Transp Porous Med 109, 693–709 (2015). https://doi.org/10.1007/s11242-015-0544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0544-3

Keywords

Navigation