Skip to main content

Advertisement

Log in

Unsteady Two-Dimensional Blood Flow in Porous Artery with Multi-Irregular Stenoses

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The flow characteristics of an unsteady axisymmetric two-dimensional (2D) blood flow in a diseased porous arterial segment with flexible walls are investigated. The arterial walls mimic the irregular constrictions whereas the lumen containing the thrombus, cholesterol, and fatty plaques represents the porous medium. The governing equations with appropriate initial and boundary conditions are solved numerically using MAC method. The discretization is done on staggered grid with non-uniform grid size and pressure-poisson equation is solved following SOR method. The pressure and velocity corrections are made cyclically until the steady state is achieved. It is observed that for decreasing permeability, flow is highly decelerated while pressure drop and wall shear stress increases. The separation zones and re-circulation regions are found for severe stenoses. Flow separation and re-circulation diminishes for decreasing permeability of the porous medium. Comparisons are provided with published experimental and numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai L., Vafai K.: A coupling model for macromolecule transport in a stenosed arterial wall. Int. J. Heat Mass Transf. 49, 1568–1591 (2006)

    Article  Google Scholar 

  • Amsden, A.A., Harlow, F.H.: The SMAC method: a numerical technique for calculating incompressible fluid flow. Los Alamos Scientific Lab. Report LA-4370, LosAlamos (1970)

  • Andersson H.I., Halden R., Glomsaker T.: Effects of surface irregularities on flow resistance in differently shaped arterial stenoses. J. Biomech. 33, 1257–1262 (2000)

    Article  Google Scholar 

  • Back L.H., Banerjee R.K.: Estimated flow resistance increase in a spiral human coronary artery segment. J. Biomech. Eng. 122, 675–677 (2000)

    Article  Google Scholar 

  • Back L.H., Cho Y.I., Crawford D.W., Cuffel R.F.: Effect of mild atherosclerosis on flow resistance in a coronary artery casting of man. ASME J. Biomech. Eng. 106, 48–53 (1984)

    Article  Google Scholar 

  • Back L.H., Radbill J.R., Cho Y.I., Crawford D.W.: Measurement and prediction of flow through a replica segment of a mildy atherosclerotic coronary artery of a man. J. Biomech. 19, 1–17 (1986)

    Article  Google Scholar 

  • Baish J.W., Netti P.A., Jain R.K.: Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc. Res. 53, 128–141 (1997)

    Article  Google Scholar 

  • Carew T.E., Vaishnav R.N., Patel D.J.: Compressibility of the arterial wall. Circ. Res. 23, 61–68 (1968)

    Google Scholar 

  • Darcy H.R.P.G.: Les Fontaines Publiques de la volle de Dijon. Vector Dalmont, Paris (1856)

    Google Scholar 

  • Dash R.K., Mehta K.N., Jayaraman G.: Casson fluid flow in a pipe filled with a homogeneous porous medium. Int. J. Eng. Sci. 34, 1145–1156 (1996)

    Article  Google Scholar 

  • El-Shahed M.: Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration. Appl. Math. Comput. 138, 479–488 (2003)

    Article  Google Scholar 

  • Harlow F., Welch J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids. 8, 2182–2189 (1965)

    Article  Google Scholar 

  • Jeong W.W., Rhee K.: Effects of surface geometry and non-Newtonian viscosity on the flow field in arterial stenoses. J. Mech. Sci. Technol. 23, 2424–2433 (2009)

    Article  Google Scholar 

  • Johnson G.A., Borovetz H.S., Anderson J.L.: A model of pulsatile flow in uniform deformable vessel. J. Biomech. 25, 91–100 (1992)

    Article  Google Scholar 

  • Johnston P.R., Kilpatrick D.: Mathematical modelling of flow through an irregular arterial stenoses. J. Biomech. 24, 1069–1077 (1991)

    Article  Google Scholar 

  • Khakpour M., Vafai K.: Critical assessment of arterial transport models. Int. J. Heat Mass Transf. 51, 807–822 (2008)

    Article  Google Scholar 

  • Khakpour M., Vafai K.: Effects of gender-related geometrical characteristics of aorta–iliac bifurcation on hemodynamics and macromolecule concentration distribution. Int. J. Heat Mass Transf. 51, 5542–5551 (2008)

    Article  Google Scholar 

  • Khaled A.R.A., Vafai K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989–5003 (2003)

    Article  Google Scholar 

  • Lei X.X., Wu W.Y., Wen G.B., Chen J.G.: Mass transport in solid tumors (I)—fluid dynamics. Appl. Math. Mech. Eng. Ed. 19, 1025–1032 (1998)

    Article  Google Scholar 

  • Liepsch D.: An introduction to biofluid mechanics: basic models and applications. J. Biomech. 35, 415–435 (2002)

    Article  Google Scholar 

  • Markham, G., Proctor, M.V.: Modifications to the two-dimensional incompressible fluid flow code ZUNI to provide enhanced performance, C.E.G.B. Report TPRD/L/0063/M82 (1983)

  • McDonald D.A.: Blood Flow in Arteries, 2nd ed. Edward Arnold, London (1974)

    Google Scholar 

  • Mekheimer Kh.S., Kot M.A.El.: Influence of magnetic field and hall currents on blood flow through a stenotic artery. Appl. Math. Mech. 29, 1093–1104 (2008)

    Article  Google Scholar 

  • Midya C., Layek G.C., Gupta A.S., Mahapatra T.R.: Magnetohydrodynamic viscous flow separation in a channel with constrictions. ASME J. Fluid Eng. 125, 952–962 (2003)

    Article  Google Scholar 

  • Milosevic M.F., Fyles A.W., Hill R.P.: The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int. J. Radiat. Oncol. Biol. Phys. 43, 1111–1123 (1999)

    Article  Google Scholar 

  • Mustapha N., Mandal P.K., Johnston P.R., Amin N.: A numerical simulation of unsteady blood flow through multi-irregular arterial stenoses. Appl. Math. Model. 34, 1559–1573 (2010)

    Article  Google Scholar 

  • Nerem R.M., Seed W.A.: An in vivo study of aortic flow disturbances. Cardiovasc. Res. 106, 1–14 (1972)

    Article  Google Scholar 

  • Patel D.J., Greenfield J.C, Fry D.L.: In vivo pressure–length–radius relationship of certain blood vessels in man and dog. In: Attinger, E.O. (ed.) Pulsatile Blood Flow, pp. 293–302. McGraw-Hill, New York (1968)

    Google Scholar 

  • Srivastava V.P., Saxena M.: Suspension model for blood flow through stenotic arteries with a cell-free plasma layer. Math. Biosci. 139, 79–102 (1997)

    Article  Google Scholar 

  • Srivastava V.P., Rastogi R., Vishnoi R.: A two-layered suspension blood flow through an overlapping stenoses. Comput. Math. Appl. 60, 432–441 (2010)

    Article  Google Scholar 

  • Sud V.K., Sekhon G.S.: Flow through a stenosed artery subject to periodic body acceleration. Med. Biol. Eng. Comput. 25, 638–644 (1987)

    Article  Google Scholar 

  • Welch, J.E., Harlow, F.H., Shannon, J.P., Daly, B.J.: The MAC Method, Los Alamos Scientific Lab, Report LA-3425, Los Alamos (1966)

  • Yakhot A., Grinberg L., Nikitin N.: Modelling rough stenoses by an immersed-boundary method. J. Biomech. 38, 1115–1127 (2005)

    Article  Google Scholar 

  • Yang N., Vafai K.: Modeling of low-density lipoprotein (LDL) transport in the artery—effects of hypertension. Int. J. Heat Mass Transf. 49, 850–867 (2006)

    Article  Google Scholar 

  • Yang N., Vafai K.: Low-density lipoprotein (LDL) transport in an artery—a simplified analytical solution. Int. J. Heat Mass Transf. 51, 497–505 (2008)

    Article  Google Scholar 

  • Young D.F.: Effect of a time dependant stenoses on flow through a tube. J. Eng. Ind. Trans. ASME 90, 248–254 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norzieha Mustapha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehmood, O.U., Mustapha, N. & Shafie, S. Unsteady Two-Dimensional Blood Flow in Porous Artery with Multi-Irregular Stenoses. Transp Porous Med 92, 259–275 (2012). https://doi.org/10.1007/s11242-011-9900-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9900-0

Keywords

Navigation