Skip to main content

Advertisement

Log in

Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Landfill methane must be captured to reduce emissions of greenhouse gases; moreover it can be used as an alternative energy source. However, despite the widespread use of landfill gas (LFG) collection systems for over three decades, little information about their capture efficiency is available, because LFG generation rates usually remain unknown. Therefore, to assess the efficiency of greenhouse gas capture and to estimate the amount of fugitive emissions, LFG generation rates should be properly determined. In addition, to improve the capture efficiency of methane while minimizing air intrusion from the atmosphere, it is important to quantify gas flow patterns within landfills. In this study, a methodology to quantify methane generation rates and to estimate the gas permeability field was examined using inverse modeling. To account for the heterogeneous, but spatially correlated structure of refuse, the pilot point method involving geostatistical techniques and optimization algorithms was used. Synthetic observation data were generated from forward simulations for a pumping test and a baro-pneumatic test, and these data were used to test the inversion procedure. The inverse model was able to reproduce the spatial permeability distribution using the transient pressure changes in response to the withdrawal of LFG during the pumping test. The LFG generation rate was also successfully estimated using the data from the baro-pneumatic test with errors less than 2%. While this methodology was developed and successfully tested using synthetic data, it will be investigated in the future using field data from the bioreactor test cells at the Yolo County Central Landfill, CA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abichou T., Chanton J., Powelson D., Fleiger J., Escoriaza S., Lei Y., Stern J.: Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag. 26, 1305–1312 (2006)

    Article  Google Scholar 

  • Ahlers C.F., Finsterle S., Bodvarsson G.S.: Characterization of subsurface pneumatic response at Yucca Mountain. J. Contam. Hydrol. 38, 47–68 (1999)

    Article  Google Scholar 

  • Barlaz M.A., Green R.B., Chanton J., Goldsmith C.D., Hater G.R.: Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ. Sci. Technol. 38, 4891–4899 (2004)

    Article  Google Scholar 

  • Bentley, H.W., Smith, S.J., Tang, J., Walter, G.R.: A method for estimating the rate of landfill gas generation by measurement and analysis of barometric pressure waves. In: Proceedings of the 18th International Conference on Solid Waste Technology and Management, Philadelphia, PA (2003)

  • Bentley, H.W., Smith, S.J., Schrauf, T.: Baro-pneumatic estimation of landfill gas generation rates at four operating landfills. In: Proceedings of SWANA’s 28th Annual Landfill Gas Symposium, San Diego, CA (2005)

  • Bogner J., Ahmed M.A., Diaz C., Faaij A., Gao Q., Hashimoto S., Mareckova K., Pipatti R., Zhang T.: Waste management. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds) Climate Change 2007: Mitigation, Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge (2007)

    Google Scholar 

  • Certes C., de Marsily G.: Application of the pilot point method to the identification of aquifer transmissivities. Adv. Water Resour. 14, 284–300 (1991)

    Article  Google Scholar 

  • de Marsily G.: Spatial variability of properties in porous media: a stochastic approach. Martinus Nijhoff, Boston (1994)

    Google Scholar 

  • Deutsch C.V., Journel A.G.: GSLIB Geostatistical software library and user’s guide. Oxford University Press, New York (1992)

    Google Scholar 

  • El-Fadel M., Findikakis A.N., Leckie J.O.: Numerical modeling of generation and transport of gas and heat in landfills I. Model formulation. Waste Manag. Res. 14, 483–504 (1996)

    Google Scholar 

  • El-Fadel M., Findikakis A.N., Leckie J.O.: Gas simulation models for solid waste landfills. Crit. Rev. Environ. Sci. Technol. 27, 237–283 (1997)

    Article  Google Scholar 

  • EMCON: Methane Generation and Recovery from Landfills. Ann Arbor Science Publishers, Ann Arbor (1980)

  • Finsterle S.: Multiphase inverse modeling: review and iTOUGH2 applications. Vadose Zone J. 3, 747–762 (2004)

    Google Scholar 

  • Finsterle S., Kowalsky M.B.: iTOUGH2-GSLIB User’s Guide, Report LBNL/PUB-3191. Lawrence Berkeley National Laboratory, Berkeley (2007)

    Google Scholar 

  • Finsterle S., Kowalsky M.B.: Joint hydrological-geophysical inversion for soil structure identification. Vadose Zone J. 7, 287–293 (2008)

    Article  Google Scholar 

  • Gómez-Hernández J.J., Sahuquillo A., Capilla J.E.: Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory J. Hydrol. 203, 162–174 (1997)

    Article  Google Scholar 

  • Hoeks J.: Significance of biogas production in waste tips. Waste Manag. Res. 1, 323–335 (1983)

    Google Scholar 

  • Jain P., Powell J., Townsend T.G., Reinhart D.R.: Air permeability of waste in a municipal solid waste landfill. J. Environ. Eng. 131, 1565–1573 (2005)

    Article  Google Scholar 

  • Jung Y., Imhoff P.T., Augenstein D.C., Yazdani R.: Influence of high-permeability layers for enhancing landfill gas capture and reducing fugitive methane emissions from landfills. J. Environ. Eng. 135, 138–146 (2009)

    Article  Google Scholar 

  • Keidser A., Rosbjerg D.: A comparison of four inverse approaches to groundwater flow and transport parameter identification. Water Resour. Res. 27, 2219–2232 (1991)

    Article  Google Scholar 

  • Kowalsky M.B., Finsterle S., Rubin Y.: Estimating flow parameter distributions using ground-penetrating radar and hydrological measurements during transient flow in the vadose zone. Adv. Water Resour. 27, 583–599 (2004)

    Article  Google Scholar 

  • Kowalsky M.B., Finsterle S., Peterson J., Hubbard S., Rubin Y., Majer E., Ward A., Gee G.: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data. Water Resour. Res. 41, W11425 (2005). doi:11410.11029/12005WR004237

    Article  Google Scholar 

  • Oweis I.S., Smith D.A., Ellwood R.B., Greene D.S.: Hydraulic characteristics of municipal refuse. J. Geotech. Eng. 116, 539–553 (1990)

    Article  Google Scholar 

  • Pierce, J., LaFountain, L., Huitric, R.: Landfill Gas Generation and Modeling Manual of Practice. Solid Waste Association of North America (SWANA), Silver Spring, MD (2004)

  • Pruess K., Battistelli A.: TMVOC, A Numerical Simulator for Three-Phase Non-Isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-Unsaturated Heterogeneous Media, Report LBNL-49375. Lawrence Berkeley National Laboratory, Berkeley (2002)

    Google Scholar 

  • Pruess K., Oldenburg C., Moridis G.: TOUGH2 User’s Guide, Version 2.0. Report LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley (1999)

    Book  Google Scholar 

  • RamaRao B.S., Lavenue M., de Marsily G., Marietta M.G.: Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields 1. Theory and computational experiments. Water Resour. Res. 31, 475–493 (1995)

    Article  Google Scholar 

  • Reinhart D.R.: Beneficial use of landfill gas. Report # 94-7. University of Central Florida, Gainesville (1994)

    Google Scholar 

  • Reinhart D.R.: Full scale experiences with leachate recirculating landfills: case studies. Waste Manag. Res. 14, 347–365 (1996)

    Google Scholar 

  • Reinhart D.R., McCreanor P.T., Townsend T.G.: The bioreactor landfill: its status and future. Waste Manag. Res. 20, 172–186 (2002)

    Article  Google Scholar 

  • Scharff H., Jacobs J.: Applying guidance for methane emission estimation for landfills. Waste Manag. 26, 417–429 (2006)

    Article  Google Scholar 

  • Schuetz C., Bogner J., Chanton J., Blake D., Morcet M., Kjeldsen P.: Comparative oxidation and net emissions of methane and selected non-methane organic compounds in landfill cover soils. Environ. Sci. Technol. 37, 5150–5158 (2003)

    Article  Google Scholar 

  • Shan C.: Analytical solutions for determining vertical air permeability in unsaturated soils. Water Resour. Res. 31, 2193–2200 (1995)

    Article  Google Scholar 

  • Spokas K., Bogner J., Chanton J.P., Morcet M., Aran C., Graff C., Golvan Y.M.-L., Hebe I.: Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?.  Waste Manag. 26, 516–525 (2006)

    Article  Google Scholar 

  • Tolaymat T.M., Green R.B., Hater G.R., Barlaz M.A., Black P., Bronson D., Powell J.: Evaluation of landfill gas decay constant for municipal solid waste landfills operated as bioreactors. J. Air Waste Manag. Assoc. 60, 91–97 (2010)

    Article  Google Scholar 

  • USEPA: AP-42: Compilation of Air Pollutant Emission Factors, AP-42, 5th Edition, Volume 1: Stationary Point and Area Sources, Chapter 2: Solid waste disposal, Section 2.4, US EPA Supplement E. USA (1998)

  • USEPA: Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. EPA-600/R-05/047 (2005)

  • Walter G.R.: Fatal flaws in measuring landfill gas generation rates by empirical well testing. J. Air Waste Manag. Assoc. 53, 461–468 (2003)

    Google Scholar 

  • Weeks E.P.: Field Determination of Vertical Permeability to Air in the Unsaturated Zone. U.S. Geological Survey Professional Paper 1051. US Geological Survey, Denver (1978)

    Google Scholar 

  • Wen X.-H., Deutch C.V., Cullick A.S.: Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. J. Hydrol. 255, 151–168 (2002)

    Article  Google Scholar 

  • Willumsen, H.: Landfill gas plants worldwide: number and type. In: Proceedings Sardinia ’03 Waste Management and Landfill Symposium. CISA, University of Cagliari, Sardinia (2003)

  • Yolo County Planning and Public Works: Demonstration of Landfill Technology for Peaking Power Potential at Yolo County Central Landfill. California Energy Commission, Sacramento (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Imhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, Y., Imhoff, P. & Finsterle, S. Estimation of Landfill Gas Generation Rate and Gas Permeability Field of Refuse Using Inverse Modeling. Transp Porous Med 90, 41–58 (2011). https://doi.org/10.1007/s11242-010-9659-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9659-8

Keywords

Navigation