Skip to main content
Log in

Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This work presents a similarity solution for boundary layer flow through a porous medium over a stretching porous wall. Two considered wall boundary conditions are power-law distribution of either wall temperature or heat flux which are general enough to cover the isothermal and isoflux cases. In addition to momentum, both first and second laws of thermodynamics analyses of the problem are investigated. Independent numerical simulations are also performed for verification of the proposed analytical solution. The results, from the two independent approaches, are found to be in complete agreement. A comprehensive parametric study is presented and it is shown that heat transfer and entropy generation rates increase with Reynolds number, Prandtl number, and suction to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Be :

Bejan number, Eq. 24

f :

Similarity function for velocity

f w :

Injection parameter, \({f_{\rm w} = - v_{\rm w} L/u_0 \sqrt{K}}\)

K :

Permeability, m2

L :

Stretching surface length, m

n :

Power of temperature/heat flux distribution

Nu :

Local Nusselt number

Nu L :

Averaged Nusselt number

Pr :

Prandtl number, Prν/α eff

q 0 :

Wall heat flux coefficient, W/m2

Re :

Reynolds number, Reρ u 0 K/L

S gen :

Entropy generation rate, N/K m2 s

T :

Temperature, K

T 0 :

Wall temperature coefficient, K

u :

Velocity in x-direction, m/s

u 0 :

Wall velocity coefficient, m/s

v :

Velocity in y-direction, m/s

v w :

Injection velocity, m/s

x :

Coordinate system, m

y :

Coordinate system, m

α eff :

Effective thermal diffusivity, m2/s

η :

Similarity parameter, \({\eta =y/\sqrt{K}}\)

θ :

Similarity function for temperature

κ :

Thermal conductivity, W/mK

μ :

Viscosity, N s/m2

μ eff :

Effective viscosity, N s/m2

ν :

Kinematic viscosity, m2/s

τ w :

Wall shear stress, N/m2

τ L :

Averaged wall shear stress, N/m2

ψ :

Stream function, m2/s

References

  • Ali M.E.: On thermal boundary layer on a power-law stretched surface with suction or injection. Int. J. Heat Fluid Flow 16, 280–290 (1995)

    Article  Google Scholar 

  • Al-Odat M.Q., Damesh R.A., Al-Azab T.A.: Thermal boundary layer on an exponentially stretching continuous surface in the presence of magnetic field effect. Int. J. Appl. Mech. Eng. 11, 289–299 (2006)

    Google Scholar 

  • Banks W.H.H.: Similarity solutions of the boundary layer equations for a stretching wall. J. Mecan. Theor. Appl. 2, 375–392 (1983)

    Google Scholar 

  • Bejan A.: Entropy Generation Minimization, the Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes. CRC Press, Boca Rotan (1995)

    Google Scholar 

  • Bejan A., Dincer I., Lorenteh S., Reyes H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

    Google Scholar 

  • Brinkman H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 27–34 (1949)

    Article  Google Scholar 

  • Cortell R.: Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Res. 37, 231–245 (2005)

    Article  Google Scholar 

  • Crane L.J.: Flow past a stretching plate. J. Appl. Math. Phys. 21, 645–647 (1970)

    Article  Google Scholar 

  • Elbashbeshy E.M.A.: Heat transfer over a stretching surface with variable surface heat flux. J. Phys. D 31, 1951–1954 (1998)

    Article  Google Scholar 

  • Elbashbeshy E.M.A.: Radiation effect on heat transfer over a stretching surface. Can. J. Phys. 78, 1107–1112 (2000)

    Article  Google Scholar 

  • Elbashbeshy E.M.A., Bazid M.A.: Heat transfer over a continuously moving plate embedded in a non-darcian porous medium. Int. J. Heat Mass Transf. 43, 3087–3092 (2000)

    Article  Google Scholar 

  • Elbashbeshy E.M.A., Bazid M.A.A.: Heat transfer over a stretching surface with internal heat generation. Appl. Math. Comput. 138, 239–245 (2003)

    Article  Google Scholar 

  • Elbashbeshy E.M.A., Bazid M.A.A.: Heat transfer over an unsteady stretching surface. Heat Mass Transf. 41, 1–4 (2004)

    Article  Google Scholar 

  • Famouri M., Hooman K.: Entropy generation for natural convection by heated partitions in a cavity. Int. Commun. Heat Mass Transf. 35, 492–502 (2008)

    Article  Google Scholar 

  • Hooman K.: A superposition approach to study slip-flow forced convection in straight microchannels of arbitrary but uniform cross-section. Int. J. Heat Mass Transf. 51, 3753–3762 (2008)

    Article  Google Scholar 

  • Hooman K., Gurgenci H.: Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium. Transp. Porous Med. 68, 301–319 (2007)

    Article  Google Scholar 

  • Hooman K., Gurgenci H., Merrikh A.A.: Heat transfer and entropy generation optimization of forced convection in porous-saturated ducts of rectangular cross-section. Int. J. Heat Mass Transf. 50, 2051–2059 (2007)

    Article  Google Scholar 

  • Ishak A., Nazar R., Pop I.: Unsteady mixed convection boundary layer flow due to a stretching vertical surface. Arabian J. Sci. Eng. 31, 165–182 (2006)

    Google Scholar 

  • Kaviany M.: Principles of Heat Transfer in Porous Media. Springer, New York (1992)

    Google Scholar 

  • Kiwan S., Ali M.E.: Near-slit effects on the flow and heat transfer from a stretching plate in a porous medium. Numer. Heat Transf. A 54, 93–108 (2008)

    Article  Google Scholar 

  • Kumari M., Slaouti A., Takhar H.S., Nakamura S., Nath G.: Unsteady free convection flow over a continuous moving vertical surface. Acta Mech. 116, 75–82 (1996)

    Article  Google Scholar 

  • Magyari E., Keller B.: Exact solutions for self-similar boundary-layer flows induced by permeable stretching surfaces. Eur. J. Mech. B 19, 109–122 (2000)

    Article  Google Scholar 

  • Mehmood A., Ali A., Shah T.: Heat transfer analysis of unsteady boundary layer flow by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 13, 902–912 (2008)

    Article  Google Scholar 

  • Nazar R., Ishak A., Pop I.: Unsteady boundary layer flow over a stretching sheet in a micropolar fluid. Int. J. Math. Phys. Eng. Sci. 2, 161–165 (2008)

    Google Scholar 

  • Nield D.A., Bejan A.: Convection in Porous Media. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Kuznetsov A.V.: Forced convection in porous media: transverse heterogeneity effects and thermal development. In: Vafai, K. (eds) Handbook of Porous Media, 2nd edn, pp. 143–193. Taylor and Francis, New York (2005)

    Google Scholar 

  • Pantokratoras A.: Flow adjacent to a stretching permeable sheet in a Darcy-Brinkman porous medium. Transp. Porous Med. 80, 223–227 (2009)

    Article  Google Scholar 

  • Sadeghi E., Bahrami M., Djilali N.: Analytical determination of effective thermal conductivity of PEM fuel cell gas diffusion layers. J. Power Sources 179, 200–208 (2008)

    Article  Google Scholar 

  • Sakiadis B.C.: Boundary layer behaviour on continuous solid surfaces:I.boundary layer equations for two-dimensional and axisymmetric flow. AICHE 7, 26–28 (1961a)

    Article  Google Scholar 

  • Sakiadis B.C.: Boundary layer behaviour on continuous solid surfaces:II.boundary layer behaviour on continuous flat surfaces. AICHE 7, 221–225 (1961b)

    Article  Google Scholar 

  • Seshadri R., Sreeshylan N., Nath G.: Viscoelastic fluid flow over a continuous stretching surface with mass transfer. Mech. Res. Commun. 22, 627–633 (1995)

    Article  Google Scholar 

  • Starov V.M., Zhdanov V.G.: Effective viscosity and permeability of porous media. Colloids Surf. A 192, 363–375 (2001)

    Article  Google Scholar 

  • Tamayol A., Bahrami M.: Analytical determination of viscous permeability of fibrous porous media. Int. J. Heat Mass Transf. 52, 2407–2414 (2009)

    Article  Google Scholar 

  • Yu B., Chiu H.-T., Ding Z., Lee L.J.: Analysis of flow and heat transfer in liquid composite molding. Int. Polym. Process. 15, 273–283 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tamayol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamayol, A., Hooman, K. & Bahrami, M. Thermal Analysis of Flow in a Porous Medium Over a Permeable Stretching Wall. Transp Porous Med 85, 661–676 (2010). https://doi.org/10.1007/s11242-010-9584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9584-x

Keywords

Navigation