Skip to main content
Log in

Instability of Hadley–Prats Flow with Viscous Heating in a Horizontal Porous Layer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The onset of convective rolls instability in a horizontal porous layer subject to a basic temperature gradient inclined with respect to gravity is investigated. The basic velocity has a linear profile with a non-vanishing mass flow rate, i.e., it is the superposition of a Hadley-type flow and a uniform flow. The influence of the viscous heating contribution on the critical conditions for the onset of the instability is assessed. There are four governing parameters: a horizontal Rayleigh number and a vertical Rayleigh number defining the intensity of the inclined temperature gradient, a Péclet number associated with the basic horizontal flow rate, and a Gebhart number associated with the viscous dissipation effect. The critical wave number and the critical vertical Rayleigh number are evaluated for assigned values of the horizontal Rayleigh number, of the Péclet number, and of the Gebhart number. The linear stability analysis is performed with reference either to transverse or to longitudinal roll disturbances. It is shown that generally the longitudinal rolls represent the preferred mode of instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alex S.M., Patil P.R.: Effect of a variable gravity field on convection in an isotropic porous medium with internal heat source and inclined temperature gradient. ASME J. Heat Transf. 124, 144–150 (2002a)

    Article  Google Scholar 

  • Alex S.M., Patil P.R.: Effect of a variable gravity field on thermal instability in a porous medium with inclined temperature gradient and vertical throughflow. J. Porous Media 5, 137–147 (2002b)

    Google Scholar 

  • Alex S.M., Patil P.R., Venakrishnan K.S.: Variable gravity effects on thermal instability in a porous medium with internal heat source and inclined temperature gradient. Fluid Dyn. Res. 29, 1–6 (2001)

    Article  Google Scholar 

  • Barletta A.: Local energy balance, specific heats and the Oberbeck-Boussinesq approximation. Int. J. Heat Mass Transf. 52, 5266–5270 (2009)

    Article  Google Scholar 

  • Barletta A., Nield D.A.: Combined forced and free convective flow in a vertical porous channel: the effects of viscous dissipation and pressure work. Transp. Porous Med. 79, 319–334 (2009a)

    Article  Google Scholar 

  • Barletta A., Nield D.A.: Mixed convection with viscous dissipation and pressure work in a lid-driven square enclosure. Int. J. Heat Mass Transf. 52, 4244–4253 (2009b)

    Article  Google Scholar 

  • Bejan A.: Heat Transfer, pp. 227–231. Wiley, New York (1993)

    Google Scholar 

  • Brevdo L., Ruderman M.S.: On the convection in a porous medium with inclined temperature gradient and vertical throughflow. Part I. Normal modes. Transp. Porous Med. 80, 137–151 (2009a)

    Article  Google Scholar 

  • Brevdo L., Ruderman M.S.: On the convection in a porous medium with inclined temperature gradient and vertical throughflow. Part II. Absolute and convective instabilities, and spatially amplifying waves. Transp. Porous Med. 80, 153–172 (2009b)

    Article  Google Scholar 

  • Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability, pp. 10–18. Oxford University Press, Oxford (1961)

    Google Scholar 

  • Guo J., Kaloni P.N.: Nonlinear stability of convection induced by inclined thermal and solutal gradients. Z. Angew. Math. Phys. 46, 645–654 (1995)

    Article  Google Scholar 

  • Kaloni P.N., Qiao Z.: Non-linear stability of convection in a porous medium with inclined temperature gradient. Int. J. Heat Mass Transf. 40, 1611–1615 (1997)

    Article  Google Scholar 

  • Kaloni P.N., Qiao Z.: Nonlinear convection induced by inclined thermal and solutal gradient with mass flow. Cont. Mech. Thermodyn. 12, 185–194 (2000)

    Article  Google Scholar 

  • Kaloni P.N., Qiao Z.: Nonlinear convection in a porous medium with inclined temperature gradient and variable gravity effects. Int. J. Heat Mass Transf. 44, 1585–1591 (2001)

    Article  Google Scholar 

  • Kundu P.K., Cohen I.M.: Fluid Mechanics, 2nd edn, pp. 117–120. Elsevier, New York (2002)

    Google Scholar 

  • Landau L.D., Lifshitz E.M.: Fluid Mechanics, Chapter 5, 2nd edn. Pergamon Press, Oxford (1987)

    Google Scholar 

  • Manole D.M., Lage J.L.: Numerical simulation of supercritical Hadley circulation, within a porous layer, induced by inclined temperature gradients. Int. J. Heat Mass Transf. 38, 2583–2593 (1995)

    Article  Google Scholar 

  • Manole D.M., Lage J.L., Nield D.A.: Convection induced by inclined thermal and solutal gradients, with horizontal mass flow, in a shallow horizontal layer of a porous medium. Int. J. Heat Mass Transf. 37, 2047–2057 (1994)

    Article  Google Scholar 

  • Manole D.M., Lage J.L., Antohe B.V.: Supercritical Hadley circulation within a layer of fluid saturated porous medium: bifurcation to traveling wave. ASME HTD 309, 23–29 (1995)

    Google Scholar 

  • Nield, D.A.: Convection in a porous medium with inclined temperature gradient and horizontal mass flow. In: Heat Transfer 1990: Proc. 9th IHTC, vol. 5, pp. 153–158. Hemisphere, New York (1990).

  • Nield D.A.: Convection in a porous medium with inclined temperature gradient. Int. J. Heat Mass Transf. 34, 87–92 (1991)

    Article  Google Scholar 

  • Nield D.A.: Convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Transf. 41, 241–243 (1998)

    Article  Google Scholar 

  • Nield D.A.: The modeling of viscous dissipation in a saturated porous medium. ASME J. Heat Transf. 129, 1459–1463 (2007)

    Article  Google Scholar 

  • Nield, D.A.: Closure to “Discussion of ‘The modeling of viscous dissipation in a saturated porous medium’ ” (2009, ASME J. Heat Transf., 131, p. 025501). ASME J. Heat Transf. 131, 025502 (2009)

  • Nield D.A., Barletta A.: The Horton–Rogers–Lapwood problem revisited: the effect of pressure work. Transp. Porous Media 77, 143–158 (2009a)

    Article  Google Scholar 

  • Nield, D.A., Barletta, A.: Extended Oberbeck–Boussinesq approximation study of convective instabilities in a porous layer with horizontal flow and bottom heating. Int. J. Heat Mass Transf. (2009b) (in press)

  • Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  • Nield D.A., Manole D.M., Lage J.L.: Convection induced by inclined thermal and solutal gradients in a shallow layer of a porous medium. J. Fluid Mech. 257, 559–574 (1993)

    Article  Google Scholar 

  • Parthiban C., Patil P.R.: Effect of inclined temperature gradient on thermal instability in an anisotropic porous medium. Wärme Stoffübertrag. 29, 63–69 (1993)

    Article  Google Scholar 

  • Parthiban C., Patil P.R.: Effect of inclined gradients on thermohaline convection in porous medium. Wärme Stoffübertrag. 29, 291–297 (1994)

    Article  Google Scholar 

  • Parthiban C., Patil P.R.: Effect of non-uniform boundary temperatures on thermal instability in a porous medium with internal heat source. Int. Commun. Heat Mass Transf. 22, 683–692 (1995)

    Article  Google Scholar 

  • Parthiban C., Patil P.R.: Thermal instability in an anisotropic porous medium with internal heat source and inclined temperature. Int. Comm. Heat Mass Transf. 24, 1049–1058 (1997)

    Article  Google Scholar 

  • Prats M.: The effects of horizontal fluid flow on thermally induced convection currents in porous mediums. J. Geophys. Res. 71, 4835–4837 (1966)

    Google Scholar 

  • Qiao Z., Kaloni P.N.: Convection induced by inclined temperature gradient with mass flow in a porous medium. ASME J. Heat Transf. 119, 366–370 (1997)

    Article  Google Scholar 

  • Qiao Z., Kaloni P.N.: Non-linear convection in a porous medium with inclined temperature gradient and vertical throughflow. Int. J. Heat Mass Transf. 41, 2549–2552 (1998)

    Article  Google Scholar 

  • Saravanan S., Kandaswamy P.: Convection currents in a porous layer with a gravity gradient. Heat Mass Transf. 39, 693–699 (2003)

    Article  Google Scholar 

  • Weber J.E.: Convection in a porous medium with horizontal and vertical temperature gradients. Int. J. Heat Mass Transf. 17, 241–248 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barletta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barletta, A., Nield, D.A. Instability of Hadley–Prats Flow with Viscous Heating in a Horizontal Porous Layer. Transp Porous Med 84, 241–256 (2010). https://doi.org/10.1007/s11242-009-9494-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-009-9494-y

Keywords

Navigation