Skip to main content
Log in

Antioxidant metabolism and oxidative damage in Anthemis gilanica cell line under fast clinorotation

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Clinostat is a device often used for applying microgravity analogs in gravitational biology studies. It can constantly change the direction of the gravity vector through clinorotation with the possibility of speed regulation. In the present study, the impact of clinorotation (speed of 30 rpm) was investigated on the cell growth, viability, oxidative damage, and antioxidant compounds in Anthemis gilanica cell line using a two-dimensional clinostat. Cell clones were obtained from putting a cell suspension (1 ml) on the solid MS medium supplemented with 1-naphthaleneacetic acid (NAA, 0.5 mg L−1) and 6-benzylaminopurine (BAP, 1.5 mg L−1). Then, a cell line clone was transferred to a liquid MS medium for proliferation. The optimum subculture time for the cell line was found to be 14–15 days, and the cell line showed higher fresh weight compared to the control. The cell line was exposed to clinorotation (30 rpm) for 3 and 7 days. Results showed the cell growth parameters are managed with the ROS level and accumulation of antioxidant compounds in a time-dependent manner. Clinorotation increased cell growth, viability, protein content, DPPH, and antioxidant power, especially after 7 days. The level of H2O2, MDA, and protein-carbonyl increased after 3 days of clinorotation and then did not change significantly after 7 days compared to the control. Comet assay showed the weak genotoxicity impact of clinorotation on DNA damage in A. gilanica, which may relate to induction of antioxidant compounds (phenol and flavonoid) and PAL activity, especially after 7 days. But anthocyanin content did not change between treatments. The results display the potential effect of clinorotation on enhancing antioxidant capacity against oxidative damage and maintaining cell growth.

Key message

Cell line with a homogenous population of proliferating cells can prepare the proper situation to study various cell responses under microgravity. Improving of potential antioxidant by clinorotation mitigates oxidative damage in medicinal plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmadi N, Hassanpour H, Hekmati M, Ghanbarzadeh M (2020) Effect of SiO2 nanoparticles on phytochemical and anatomical alterations in Anthemis gilanica. Iran J Plant Physiol 10:3223–3231

    Google Scholar 

  • Bardaweel SK, Tawaha KA, Hudaib MM (2014) Antioxidant, antimicrobial and antiproliferative activities of Anthemis palestina essential oil. BMC Complement Altern Med 14:297

    Article  PubMed  PubMed Central  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313

    Article  CAS  PubMed  Google Scholar 

  • Benzie FF, Strain JJ (1999) Ferric reducing/ antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol 299:15–23

    Article  CAS  Google Scholar 

  • Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, Van Loon JJ, Herranz R, Carnero-Diaz E, Medina FJ (2016) Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. J Plant Physiol 207:30–41

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  • Chen HL, Qu LN, Li QD, Bi L, Huang ZM, Li YH (2009) Simulated microgravity induced oxidative stress in different areas of rat brain. Acta Physiol Sin 61:108–114

    CAS  Google Scholar 

  • Cogoli M (1992) The fast rotating clinostat: a history of its use in gravitational biology and a comparison of ground-based and flight experiment results. ASGSB Bull 5:59–67

    CAS  PubMed  Google Scholar 

  • Eser F, Sahin Yaglioglu A, Dolarslan M, Aktas E, Onal A (2017) Dyeing, fastness, and cytotoxic properties, and phenolic constituents of Anthemis tinctoria var. tinctoria (Asteraceae). J Text Inst 108(9):1489–1495

    Article  CAS  Google Scholar 

  • Garcia O, Romero I, Gonzalez GE, Mandina T (2007) Measurements of DNA damage on silver stained comets using free Internet software. Mutat Res 627:186–190

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Reinheckel T, Davies KJ (1996) Degradation of oxidized proteins in K562 human hematopoietic cells by proteasome. J Biol Chem 271(26):15504–15509

    Article  CAS  PubMed  Google Scholar 

  • Hasenstein KH, van Loon JJWA (2015) Clinostats and other rotating systems: design, function, and limitations. In: Beysens DA, van Loon JJWA (eds) Generation and applications of extra-terrestrial environments on earth. River Publishers, Delft, the Netherlands, pp 147–156

  • Hassanpour H, Ghanbarzadeh M (2021) Induction of cell division and antioxidative enzyme activity of Matricaria chamomilla L. cell line under clino-rotation. Plant Cell Tissue Organ Culture 146:215–224

    Article  CAS  Google Scholar 

  • Hassanpour H, Niknam V (2020) Establishment and assessment of cell suspension cultures of Matricaria chamomilla as a possible source of apigenin under static magnetic field. Plant Cell Tissue Organ Culture 142(3):583–593

    Article  CAS  Google Scholar 

  • Hassanpour H, Niknam V, Haddadi BS (2016) High-frequency vibration improve callus growth via antioxidant enzymes induction in Hyoscyamus kurdicus. Plant Cell Tissue Organ Culture 128:231–241

    Article  CAS  Google Scholar 

  • Hassanpour H, Eydi A, Hekmati M (2021) Electromagnetic field improved nanoparticle impact on antioxidant activity and secondary metabolite production in Anthemis gilanica seedlings. Int J Agron. https://doi.org/10.1155/2021/8730234

    Article  Google Scholar 

  • Hatamnia AA, Abbaspour N, Darvishzadeh R (2014) Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits. Food Chem 145:306–311

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Herranz R, Anken RH,  Boonstra J, Braun M, Christianen PCM, de Geest M, Hauslage J, Hilbig R, Hill RJA, Lebert M, Medina FJ, Vagt N, Ullrich O, van Loon JJWA, Hemmersbach R (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiol 13(1):1–17

  • Herranz R, Medina FJ (2014) Cell proliferation and plant development under novel altered gravity environments. Plant Biol 16:23–30

    Article  PubMed  Google Scholar 

  • Hoeijmakers JH (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  • Horn A, Ullrich O, Huber K, Hemmersbach R (2011) PMT (photomultiplier) clinostat. Microgravity Sci Technol 23:67–71

    Article  Google Scholar 

  • Jamshidi M, Ghanati F (2017) Taxanes content and cytotoxicity of hazel cells extract after elicitation with silver nanoparticles. Plant Physiol Biochem 110:178–184

    Article  CAS  PubMed  Google Scholar 

  • Jin J, Chen H, Cai W (2015) Transcriptom analysis of Oriza sativa calluses under microgravity. Mic Sci Technol 27(6):437–453

    Google Scholar 

  • Johnson CM, Subramanian A, Pattathil S, Correll MJ, Kiss JZ (2019) Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight. Am J Bot 104(8):1219–1231

    Article  CAS  Google Scholar 

  • Kamal KY, Hemmersbach R, Medina FJ, Herranz R (2015) Proper selection of 1 g controls in simulated microgravity research as illustrated with clinorotated plant cell suspension cultures. Life Sci Space Res 5:47–52

    Article  Google Scholar 

  • Kiss JZ, Wolverton C, Wyatt SE, Hasenstein KH, van Loon JJWA (2019) Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front Plant Sci 10:1577

    Article  PubMed  PubMed Central  Google Scholar 

  • Klaus DM, Todd P, Schatz A (1998) Functional weightlessness during clinorotation of cell suspensions. Adv Space Res 21(8/9):1315–1318

    Article  CAS  PubMed  Google Scholar 

  • Kordyum EL, Nedukha OM, Grakhov VP, Vorobyova TV, Klymenko OM, Zhupanov IV (2015) Study of the influence of simulated microgravity on the cytoplasmic membrane lipid bilayer of plant cells. Kosmichna Nauka Technol 21(3):40–47

    Google Scholar 

  • Krause L, Braun M, Hauslage J, Hemmersbach R (2018) Analysis of statoliths displacement in Chara rhizoids for validating the microgravity simulation quality of clinorotation modes. Microgravity Sci Technol 30:229–236

    Article  Google Scholar 

  • Kumari R, Singh KP, Dumond Jr (2009) Simulated microgravity decreases DNA repair capacity and induces DNA damage in human lymphocytes. J Cell Biochem 107(4):723–731

  • Latef AAHA, Dawood MFA, Hassanpour H, Rezayian M, Younes NA (2020) Impact of the static magnetic field on growth, pigments, osmolytes, nitric oxide, hydrogen sulfide, phenylalanine ammonia-lyase activity, antioxidant defense system, and yield in lettuce. Biology 9(7):172

    Article  CAS  PubMed Central  Google Scholar 

  • Li N, An L, Hang H (2015) Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions. PLoS ONE 10:e0125236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  CAS  PubMed  Google Scholar 

  • Mao XW, Pecaut MJ, Stodieck LS, Ferguson VL, Bateman TA, Bouxsein M, Jones TA, Moldovan M, Cunningham CE, Chieu J, Gridley DS (2013) Spaceflight environment induces mitochondrial oxidative damage in ocular tissue. Radiat Res 180:340–350

    Article  CAS  PubMed  Google Scholar 

  • Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832. https://doi.org/10.3389/fpls.2017.00832

  • Matía I, González-Camacho F, Herranz R, Kiss JZ, Gasset G, van Loon JJWA, Marco R, Medina FJ (2010) Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. J Plant Physiol 167:184–193

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Murray JAH (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30(2):203–212

    Article  CAS  PubMed  Google Scholar 

  • Mognato M, Girardi C, Fabris S, Celotti L (2009) DNA repair in modeled microgravity: double strand break rejoining activity in human lymphocytes irradiated with gamma-rays. Mutat Res 663:32–39

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Villanueva M, Wong M, Lu T, Zhang Y, Wu H (2017) Interplay of space radiation and microgravity in DNA damage and DNA damage response. Npj Microgravity 3:1–7

    Article  CAS  Google Scholar 

  • Mouhamad RS, Shallal HH, Al-Daoude A (2019) Microgravity effects on the growth, cell cytology properties and DNA alterations of two Iraqi local plants. J Rice Res 7:2

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy HN, Lee EJ, Kee-Yoeup P (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Culture 118:1–16

    Article  CAS  Google Scholar 

  • Nakajima S, Ogawa Y, Suzuki T, Kondo N (2019) Enhanced antioxidant activity in mung bean seedlings grown under slow clinorotation. Microgravity Sci Technol 31:395–401

    Article  Google Scholar 

  • Nakajima S, Nagata M, Akifumi Ikehata A (2021) Mechanism for enhancing the growth of mung bean seedlings under simulated microgravity. Npj Microgravity 7:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L). J Plant Physiol 141:147–152

    Article  CAS  Google Scholar 

  • Patro BS, Bauri AK, Mishra S (2005) Chattopadhyay, antioxidant activity of Myristicama labarica extracts and their constituents. J Agric Food Chem 53:6912–6918

    Article  CAS  PubMed  Google Scholar 

  • Qu L, Chen H, Liu X, Bi L, Xiong J, Mao Z, Li Y (2010) Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem Res 35(9):1445–1454

    Article  CAS  PubMed  Google Scholar 

  • Roberts JE, Kukielczak BM, Chignell CF, Sik BH, Hu DN, Principato MA (2006) Simulated microgravity induced damage in human retinal pigment epithelial cells. Mol Vis 12:633–638

    CAS  PubMed  Google Scholar 

  • Salucci M, Stivala LA, Maiani G, Bugianesi R, V Vannini V (2002) Flavonoids uptake and their effect on cell cycle of human colon adenocarcinoma cells (Caco2). Br J Cancer 86(10):1645–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatten H, Lewis ML, Chakrabarti A (2001) Spaceflight and clinorotation cause cytoskeleton and mitochondria changes and increases in apoptosis in cultured cells. Acta Astronaut 49:399–418

    Article  CAS  PubMed  Google Scholar 

  • Shabrangi A, Hassanpour H, Majd A, Sheidai M (2015) Induction of genetic variation by electromagnetic fields in Zea mays L. and Brassica napus L. Caryologia 68(4):272–279

    Article  Google Scholar 

  • Shelhamer M, Bloomberg A, LeBlanc A, Norsk P (2020) Selected discoveries from human research in space that are relevant to human health on Earth. Npj Microgravity 6:1–5

    Article  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Soga K, Wakabayashi K, Kamisaka S, Hoson T (2002) Stimulation of elongation growth and xyloglucan breakdown in Arabidopsis hypocotyls under microgravity conditions in space. Planta 215(6):1040–1046

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Ghanati F, Hajebrahimi Z (2019) The role of phenolic compounds in growth improvement of cultured tobacco cells after exposure to 2-D clinorotation. Plant Physiol 9:2921–2929

  • Stavnichuk M, Mikolajewicz N, Corlett T, Morris M, Komarova SVA (2019) Systematic review and meta-analysis of bone loss in space travelers. Npj Microgravity 6:1–9

    Google Scholar 

  • Thiel CS, Tauber S, Lauber B, Polzer J, Seebacher C, Uhl R, Neelam S, Zhang Y, Levine H, Ullrich O (2019) Rapid morphological and cytoskeletal response to microgravity in human primary macrophages. Int J Mol Sci 20(10):2402

    Article  PubMed Central  CAS  Google Scholar 

  • van Loon JJWA (2007) Some history and use of the random positioning machine, RPM, in gravity related research. Adv Space Res 39:1161–1165

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Verbeke P, Siboska GE, Clark BFC, Rattan SIS (2000) Kinetin inhibits protein oxidation and glycoxidation in vitro. Biochem Biophy Res Commun 276:1265–1270

    Article  CAS  Google Scholar 

  • Villacampa A, Ciska M, Manzano A, Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ (2021) From spaceflight to Mars g-levels: adaptive response of A. Thaliana seedlings in a reduced gravity environment is enhanced by red-light photostimulation. Int J Mol Sci 22:899

    Article  CAS  PubMed Central  Google Scholar 

  • Wang J, Zhang J, Bai S, Wang G, Mu L, Sun B, Wang D, Kong Q, Liu Y, Yao X, Xu Y, Li H (2009) Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells. Neurochem Int 55(7):710–716

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, An L, Jiang Y, Hang H (2011) Effects of simulated microgravity on embryonic stem cells. PLoS ONE 6(12):e29214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber D, Davies MJ, Grune T (2015) Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 5:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C-Y, Rolfe PA, Gifford DK, Fink GR (2010) Control of transcription by cell size. PLoS Biol 8:e1000523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu F, Driss-Ecole D, Rembur J, Legué V, Perbal G (1999) Effect of microgravity on the cell cycle in the lentil root. Physiol Plant 105(1):171–178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support was prepared by the Aerospace Research Institute, Ministry of Science Research and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassanpour Halimeh.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Christophe Hano.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halimeh, H. Antioxidant metabolism and oxidative damage in Anthemis gilanica cell line under fast clinorotation. Plant Cell Tiss Organ Cult 150, 709–719 (2022). https://doi.org/10.1007/s11240-022-02324-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02324-2

Keywords

Navigation