Skip to main content
Log in

Direct somatic embryogenesis of potato [Solanum tuberosum (L.)] cultivar ‘Kufri Chipsona 2’

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Direct somatic embryo induction was achieved from leaf and internodal explants of Solanum tuberosum (L.) cultivar ‘Kufri Chipsona 2’ on Murashige and Skoog (Physiol Plant 15:473–497, 1962) medium containing 10.0 µM silver nitrate (MS1 medium) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D; 2.5 µM) and 6-benzyladenine (BA; 1.0 µΜ). It was observed that in absence of AgNO3, friable callus was induced from cut ends of the explants, which does not develop into any kind of organised structure; thus highlighting the requirement of AgNO3 for somatic embryogenesis in potato. Furthermore, the effect of medium strength, sucrose concentration and heat shock treatment on somatic embryogenic potential of explants was also investigated. When the strength of basal medium was reduced to half, the frequency of internodal segments differentiating somatic embryos was almost double in comparison to full strength MS medium. Sucrose concentration and heat shock treatment were found to have interactive effect on somatic embryo induction. Explants subcultured on medium containing 174 mM sucrose and subjected to heat shock (1 h; 50 °C) showed maximum somatic embryo differentiation. Although, the percent explants differentiating somatic embryos decreased sharply with increase in sucrose concentration (> 174 mM), yet the number of somatic embryos differentiated per explant were found to increase with further increase in sucrose concentration. Histological observations revealed that somatic embryos directly developed from epidermis of leaf explant and cut ends of internodal segments progressed from globular to cotyledonary stage after passing through intermediate embryogenic stages (heart shaped and torpedo shaped). Conversion of somatic embryos into plantlets (92%) was achieved on MS1 medium supplemented with BA (10.0 µM) and gibberellic acid (15.0 µM) and all regenerated plants were found to be phenotypically alike.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Mazrooei S, Bhatti MH, Henshaw GG, Taylor NJ, Blakesley D (1997) Optimisation of somatic embryogenesis in fourteen cultivars of sweet potato [Ipomoea batatas (L.) Lam.]. Plant Cell Rep 16:710–714

    Article  CAS  Google Scholar 

  • Ardebili SH, Shariatpanahi ME, Amiri R, Emamifar M, Oroojloo M, Nematzadeh G, Noori SAS, Heberle-Bors E (2011) Effect of 2,4-D as a novel inducer of embryogenesis in microspores of Brassica napus L. Czech J Genet Plant Breed 47:114–122

    Article  CAS  Google Scholar 

  • Bai B, Su YH, Yuan J, Zhang XS (2013) Induction of somatic embryos in arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Mol Plant 6:1247–1260

    Article  PubMed  CAS  Google Scholar 

  • Bogre L, Stefanov I, Abraham M, Somogyi I, Dudits D (1990) Differences in response to 2,4-dichlorophenoxyacetic acid (2,4-D) treatment between embryogenic and non-embryogenic lines of alfalfa. In: Nijkamp HJJ, van der Plas LHM, van Aartrijk J (eds) Progress in plant cellular and molecular biology. Kluwer, Dordrecht, pp 427–436

    Chapter  Google Scholar 

  • Chandra R, Upadhya MD, Jha KK (1983) Regeneration of plantlets from potato callus. J Indian Potato Assoc 10:29–33

    Google Scholar 

  • Che P, Love TM, Frame BR, Wang K, Carriquiry AL, Howell SH (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol Biol 62:1–14

    Article  PubMed  CAS  Google Scholar 

  • Cooke TJ, Racusen RH, Cohen JD (1993) The role of auxin in plant embryogenesis. Plant Cell 5:1494–1495

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davletova S, Meszaros T, Miskolczi P, Oberschall A, Torok K, Magyar Z, Dudits D, Deak M (2001) Auxin and heat shock activation of a novel member of the calmodulin like protein kinase gene family in cultured alfalfa cells. J Exp Bot 52:215–221

    Article  PubMed  CAS  Google Scholar 

  • de Garcia E, Martinez S (1995) Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from stem nodal sections. J Plant Physiol 145:526–530

    Article  Google Scholar 

  • Dheda D, Dumortier F, Panis B, Vuylsteke D, Langhe E (1991) Plant regeneration in cell suspension cultures of the cooking banana cv. Bluggoe (Musa spp. ABB group). Fruits 46:125–135

    Google Scholar 

  • Dong JZ, Dunstan DI (1996) Characterization of three heat-shock protein genes and their developmental regulation during somatic embryogenesis in white spruce (Picea glauca (Moanch) Voss). Planta 200:85–91

    Article  PubMed  CAS  Google Scholar 

  • El Meskaoui A, Tremblay FM (2001) Involvement of ethylene in the maturation of black spruce embryogenic cell lines with different maturation capacities. J Exp Bot 52:761–769

    Article  PubMed  Google Scholar 

  • El Meskaoui A, Desjardins Y, Tremblay FM (2000) Kinetics of ethylene biosynthesis and its effects during maturation of white spruce somatic embryos. Physiol Plant 109:333–342

    Article  Google Scholar 

  • Fiegert AK, Mix-Wagner G, Vorlop KD (2000) Regeneration of Solanum tuberosum L. cv. Tomensa: induction of somatic embryogenesis in liquid culture for the production of “artificial seed”. Landbauforsch Volkenrode 50:199–202

    CAS  Google Scholar 

  • Fisichella M, Silvi E, Morini S (2000) Regeneration of somatic embryos and roots from quince leaves cultured on media with different macroelement composition. Plant Cell Tiss Organ Cult 63:101–107

    Article  CAS  Google Scholar 

  • Groll J, Mycock DJ, Gray VM (2002) Effect of medium salt concentration on differentiation and maturation of somatic embryos of Cassava (Mahinot esculenta Crantz). Ann Bot 89:645–648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gyorgyey J, Gartner A, Nemeth K, Hirt H, Heberle Bors H, Dudits D (1991) Alfalfa heat shock genes differentially expressed during somatic embryogenesis. Plant Mol Biol 16:999–1007

    Article  PubMed  CAS  Google Scholar 

  • Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol 124:1437–1448

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iriawati I, Aprilianty F (2014) Induction of somatic embryos from leaf and stem nodal section explants of potato (Solanum tuberosum L.). J Math Fundam Sci 46:301–312

    Article  Google Scholar 

  • JayaSree T, Pavan U, Ramesh M, Rao AV, Reddy KJM, Sadanandam A (2001) Somatic embryogenesis from leaf cultures of potato. Plant Cell Tiss Organ Cult 64:13–17

    Article  CAS  Google Scholar 

  • Johansson LB (1986) Improved methods for induction of embryogenesis in anther cultures of Solanum tuberosum. Potato Res 29:179–190

    Article  Google Scholar 

  • Karami O, Delijou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentration on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    Article  CAS  Google Scholar 

  • Karami O, Aghavaisi B, Mahmoudi Pour A (2009) Molecular aspects of somatic-to-embryogenic transition in plants. J Chem Biol 2:177–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Reddy MS, Kumar A (2017) Efficient, one step and cultivar independent shoot organogenesis of potato. Physiol Mol Biol Plant 23:461–469

    Article  CAS  Google Scholar 

  • Kepczynska E, Rudus I, Kepczynski J (2009) Endogenous ethylene in indirect somatic embryogenesis of Medicago sativa L. Plant Growth Regul 59:63–73

    Article  CAS  Google Scholar 

  • Khilwani B, Kaur A, Ranjan R, Kumar A (2016) Direct somatic embryogenesis and encapsulation of somatic embryos for in vitro conservation of Bacopa monnieri (L.) Wettst. Plant Cell Tiss Organ Cult 127:433–442

    Article  CAS  Google Scholar 

  • Kong LS, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    Article  CAS  Google Scholar 

  • Kumar A, Sood A, Palni LMS, Gupta AK (1999) In vitro propagation of Gladiolus hybridus Hort. Synergistic effect of heat shock and sucrose on morphogenesis. Plant Cell Tissue Org Cult 57:105–112

    Article  CAS  Google Scholar 

  • Kumar A, Palni LMS, Sood A, Sharma M, Palni UT, Gupta AK (2002) Heat-shock induced somatic embryogenesis in callus cultures of gladiolus in the presence of high sucrose. J Hortic Sci Biotechnol 77:73–78

    Article  CAS  Google Scholar 

  • Kumar A, Aggarwal D, Gupta P, Reddy MS (2010) Factors affecting in vitro propagation and field establishment of Chlorophytum borivilianum. Biol Plant 54:601–606

    Article  CAS  Google Scholar 

  • Kvaalen H (1994) Ethylene synthesis and growth in embryogenic tissue of Norway spruce: effects of oxygen, 1-aminocyclopropane-1-carboxylic acid, benzyladenine and 2,4-dichloropenoxyacetic acid. Physiol Plant 92:109–117

    Article  CAS  Google Scholar 

  • Lam SL (1975) Shoot formation in potato tuber discs in tissue culture. Am Potato J 52:103–106

    Article  Google Scholar 

  • Lam SL (1977) Plantlet formation from potato tuber discs in vitro. Am Potato J 54:465–468

    Article  Google Scholar 

  • Litz RE (1986) Effect of osmotic stress on somatic embryogenesis in Carica suspension cultures. J Am Soc Hortic Sci 111:969–972

    CAS  Google Scholar 

  • Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microb Biot 11:416–425

    Article  CAS  Google Scholar 

  • Liu C-M, Xu Z-H, Chua N-H (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5:621–630

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lloyd CW, Lowe SB, Peace GW (1980) The mode of action of 2,4-D in counteracting the elongation of carrot cells grown in culture. J Cell Sci 45:257–268

    PubMed  CAS  Google Scholar 

  • Mathews H, Schopke C, Carcamo R, Chavarriaga P, Fauquet C, Beachy RN (1993) Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Rep 12:328–333

    Article  PubMed  CAS  Google Scholar 

  • Merkle SA, Parrott WA, Flin BS (1995) Morphogenic aspect of somatic embryogenesis. In: Thorpe T (ed) In vitro embryogenesis in plant. Klauwer Academic Publishers, Dordrecht, pp 155–203

    Chapter  Google Scholar 

  • Michalczuk L, Cooke TJ, Cohen JD (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    Article  CAS  Google Scholar 

  • Montoro P, Etienne H, Michaux-Ferriere N, Marc-Philippe C (1993) Callus friability and somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Organ Cult 33:331

    Article  CAS  Google Scholar 

  • Munksgaard D, Mattsson O, Okkels FT (1995) Somatic embryo development in carrot is associated with an increase in levels of S-adenosylmethionine, S-adenosylhomocysteine and DNA methylation. Physiol Plant 93:5–10

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagmani R, Becwar MR, Wann SR (1987) Single-cell origin and development of somatic embryos in Picea abies (L.) Karst. (Norway spruce) and P. glauca (Moench) Voss (white spruce). Plant Cell Rep 6:157–159

    PubMed  CAS  Google Scholar 

  • Nassar AMK, Abdulnour J, Leclerc Y, Li XQ, Donnelly DJ (2011) Intraclonal selection for improved processing of NB ‘Russet Burbank’ potato. Am J Potato Res 88:387–397

    Article  Google Scholar 

  • Navarro BV, Elbl P, De Souza AP, Jardim V, de Oliveira LF, Macedo AF et al (2017) Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS ONE 12:e0180051

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: Effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403

    Article  CAS  Google Scholar 

  • Pal AK, Acharya K, Ahuja PS (2011) Endogenous auxin level is a critical determinant for in vitro adventitious shoot regeneration in potato (Solanum tuberosum L.). J Plant Biochem Biot 21:205–212

    Article  CAS  Google Scholar 

  • Pasternak TP, Prinsen E, Ayaydin F, Miskolczi P, Potters G, Asard H et al (2002) The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast-derived cells of alfalfa. Plant Physiol 129:1807–1819

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504

    Article  PubMed  CAS  Google Scholar 

  • Pinto G, Silva S, Park YS, Neves L, Araujo C, Santos C (2008) Factors influencing somatic embryogenesis induction in Eucalyptus globulus Labill.: basal medium and anti-browning agents. Plant Cell Tiss Organ Cult 95:79–88

    Article  CAS  Google Scholar 

  • Powell W, Uhrig H (1987) Anther culture of Solanum genotypes. Plant Cell Tiss Org Cult 11:13–24

    Article  Google Scholar 

  • Pretova A, Dedicova B (1992) Somatic embryogenesis in Solanum tuberosum L. cv. Desiree from unripe zygotic embryos. J Plant Physiol 139:539–542

    Article  Google Scholar 

  • Puigderrajols P, Jofre A, Mir G, Pla M, Verdaguer D, Huguet G, Molinas M (2002) Developmentally and stress-induced small heat shock proteins in cork oak somatic embryos. J Exp Bot 53:1445–1452

    PubMed  CAS  Google Scholar 

  • Seabrook JA, Douglass LK (2001) Somatic embryogenesis on various potato tissues from a range of genotypes and ploidy levels. Plant Cell Rep 20:175–182

    Article  CAS  Google Scholar 

  • Selby C, McRoberts WC, Hamilton JTG, Harvey BMR (1996) Inhibition of somatic embryo maturation in Sitka spruce [Picea sitchensis (Bong.) Carr.] by butylated hydroxytoluene. A volatile antioxidant released by parafilm. Plant Cell Rep 16:192–195

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Millam S (2004) Somatic embryogenesis in Solanum tuberosum L.: a histological examination of key development stages. Plant Cell Rep 23:115–119

    PubMed  CAS  Google Scholar 

  • Sharma SK, Bryan GJ, Winfield MO, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Millam S, Hedley PE, McNicol J, Bryan GJ (2008) Molecular regulation of somatic embryogenesis in potato: an auxin led perspective. Plant Mol Biol 68:185–201

    Article  PubMed  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized developmentof culture cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Taylor NJ, Edwards M, Kiernan RJ, Davey CDM, Blakesley D, Henshaw GG (1996) Development of friable embryogenic callus and embryogenic suspension culture systems in Cassava (Mahinot esculenta Crantz). Nat Biotechnol 14:726–730

    Article  PubMed  CAS  Google Scholar 

  • Tiwari V, Singh BD, Tiwari KN (1998) Shoot regeneration and somatic embryogenesis from different explants of brahmi [Bacopa monniera (L.) Wettst]. Plant Cell Rep 17:538–543

    Article  CAS  Google Scholar 

  • Triqui Z, Guedira A, Chlyah A, Chlyah H, Souvannavong V, Haicour R, Sihachakr D (2008) Effect of genotype, gelling agent, and auxin on the induction of somatic embryogenesis in sweet potato (Ipomoea batatas Lam.). C R Biol 331:198–205

    Article  CAS  Google Scholar 

  • Vargas TE, De Garcia E, Oropeza M (2005) Somatic embryogenesis in Solanum tuberosum from cell suspension cultures: histological analysis and extracellular protein patterns. J Plant Physiol 162:449–456

    Article  PubMed  CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57:443–462

    Article  Google Scholar 

  • Wu X-M, Kou S-J, Liu Y-L, Fang Y-N, Xu Q, Guo W-W (2015) Genome wide analysis of small RNAs in nonembryogenic and embryogenic tissues of citrus: microRNA-and siRNA-mediated transcript cleavage involved in somatic embryogenesis. Plant Biotechnol J 13:383–394

    Article  PubMed  CAS  Google Scholar 

  • Xing GM, Li S, Cui KR, Wang YF (2000) Mechanisms of plant somatic embryogenesis. Prog Nat Sci 10:641–649

    CAS  Google Scholar 

  • Yang X, Zhang X (2010) Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci 29:36–57

    Article  CAS  Google Scholar 

  • Yoon IS, Park DH, Mori H, Imaseki H, Kang BG (1999) Characterization of an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene, VR-AC56, of mungbean (Vigna radiata (L.) Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco. Plant Cell Physiol 40:431–438

    Article  PubMed  CAS  Google Scholar 

  • Zavattieri M, Frederico A, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol N Am. https://doi.org/10.2225/vol13-issue1-fulltext-4

    Article  Google Scholar 

  • Zimmerman JL, Apuya NR, Darwish K, O’Carrol C (1989) Novel regulation of heat shock genes during carrot somatic embryo development. Plant Cell 1:1137–1146

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zobayed SMA, Armstrong J, Armstrong W (2001) Micropropagation of potato: evaluation of closed, diffusive and forced ventilation on growth and tuberization. Ann Bot 87:53–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Amanpreet Kaur is thankful to University Grants Commission (UGC), New Delhi for the award of Maulana Azad National Fellowship for minority students for the part of this work. Council of Scientific & Industrial Research (CSIR), New Delhi is thanked for the financial support to the project (No. 38(1465)/18/EMR-II). TIFAC-CORE is thanked for the facilities to carry out research work.

Author information

Authors and Affiliations

Authors

Contributions

AK conducted experiments, complied and analysed data, also wrote the initial draft of manuscript. AK planed and designed experiments and finalised the manuscript. MSR corrected manuscript and helped in statistical analyses.

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors or with anyone else regarding this manuscript.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Reddy, M.S. & Kumar, A. Direct somatic embryogenesis of potato [Solanum tuberosum (L.)] cultivar ‘Kufri Chipsona 2’. Plant Cell Tiss Organ Cult 134, 457–466 (2018). https://doi.org/10.1007/s11240-018-1435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1435-4

Keywords

Navigation