Skip to main content
Log in

Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huétor) and evaluation of their genetic stability

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

We describe an encapsulation–dehydration procedure with prefreezing steps for the cryopreservation of rhizome bud explants of Asparagus officinalis L. cv. Morado de Huétor. With this procedure, survival of Rhizome buds was at least 84 and 42% developed to complete plantlets at 8 weeks. Flow cytometry and EST-SSR molecular markers were used to assess genetic stability of the regenerated material. Effects of preculture time in a medium rich in sucrose and prefreezing treatments (0 °C or/and − 20 °C) on plant recovery were evaluated. Rhizome Buds of the “Morado de Huétor” landrace were incubated in preculture medium (MS + 0.3 M sucrose) for 48 h, encapsulated in alginate beads and desiccated until a water content of 35%, prefrozen for one hour at 0 °C plus one hour at − 20 °C, followed by cryopreservation in liquid nitrogen, and then were rewarmed and recovered in ARBM medium for 6 weeks and finally incubated in ARBM-0 for 4 weeks. Analyses of ploidy and molecular stability of plantlets recovered from cryopreserved rhizome buds of two selected genotypes showed no differences compared with the mother plants. Cryopreservation of RB explants of A. officinalis with this Encapsulation–Dehydration procedure will be useful in long-term preservation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Araki H, Shimazaki H, Hirata Y, Oridate T, Harada T, Yakuwa T (1992) Chromosome number variation of callus cells and regenerated plants in Asparagus officinalisL. Plant Tissue Cult Lett 9:169–175

    Article  Google Scholar 

  • Bouman H, de Klerk GJ (1990) Cryopreservation of lily meristems. Acta Hortic 266:331–337

    Article  Google Scholar 

  • Carmona-Martín E, Regalado JJ, Padilla IMG, Westendorp N, Encina CL (2014) A new and efficient micropropagation method and its breeding applications in Asparagusgenera. Plant Cell Tissue Organ Cult 119:479–488

    Article  Google Scholar 

  • Caruso M, Federici CT, Roose ML (2008) EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breed 21:195–204. https://doi.org/10.1007/s11032-007-9120-z

    Article  CAS  Google Scholar 

  • Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256. https://doi.org/10.1007/s11627-009-9265-z

    Article  Google Scholar 

  • Condello E, Palombi MA, Tonelli MG, Damiano C, Caboni E (2009) Genetic stability of wild pear (Pyrus pyrasterBurgsd) after cryopreservation by encapsulation dehydration. Agric Food Sci 18:136–143

    Article  CAS  Google Scholar 

  • Dereuddre J, Scottez C, Arnaud Y, Duron M (1990) Effects of cold hardening on cryopreservation of axillary pear (Pyrus communisL. cv. Beurre Hardy) in vitroplantlets to dehydration and subsequent freezing in liquid nitrogen: effects of previous cold hardening. CR Acad Sci Paris 310, Ser III: 317–323

    Google Scholar 

  • Engelmann F, Gonzalez-Arnao MT, Wu Y, Escobar R (2008) The development of encapsulation dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, Corvallis, pp 59–75

    Chapter  Google Scholar 

  • Fabre J, Dereuddre J (1990) Encapsulation–dehydration: a new approach to cryopreservation of Solanum shoots tips. Cryo Lett 11:413–426

    Google Scholar 

  • Fernandes P, Rodriguez E, Pinto G, Roldán-Ruiz I, De Loose M, Santos C (2008) Cryopreservation of Quercus subersomatic embryos by encapsulation–dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  CAS  PubMed  Google Scholar 

  • Galbraight DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle intact plant tissues. Science 220:1049–1051

    Article  Google Scholar 

  • González-Benito ME, Kremer C, Ibáñez MA, Martín C (2016) Effect of antioxidants on the genetic stability of cryopreserved mint shoot tips by encapsulation–dehydration. Plant Cell Tissue Organ Cult 127:359–368

    Article  Google Scholar 

  • Harding K (1997) Stability of the ribosomal RNA genes in Solanum tuberosum L. plants recovered from cryopreservation. Cryo Lett 18:217–230

    CAS  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22

    Google Scholar 

  • Jitsuyama Y, Suzuki T, Harada T, Fujikawa S (2002) Sucrose incubation increases freezing tolerance of Asparagus (Asparagus officinalisL.) embryogenic cell suspensions. Cryo Lett 23:103–112

    CAS  Google Scholar 

  • Kohmura H, Sakai A, Chokyu S, Yakuwa T (1992) Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalisL. cv. Hiroshimagreen (2n = 30) by the techniques of vitrification. Plant Cell Rep 11:433–437

    Article  CAS  PubMed  Google Scholar 

  • Kumu Y, Harada T, Yakuwa T (1983) Development of a whole plant from a shoot tip of Asparagus officinalisL. frozen down to –196 °C. J Fac Agric Hokkaido Univ 61(3):285–294

    Google Scholar 

  • Kunitake H, Mii M (1998) Somatic embryogenesis and its application for breeding and micropropagation in asparagus(Asparagus officinalisL.). Plant Biotechnol 15:51–61

    Article  CAS  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M (1998) Somaclonal and chromosomal effects of genotype, ploidy and culture duration in Asparagus officinalis L. Euphytica 102:309–316

    Article  Google Scholar 

  • Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. Cryo Lett 29:7–14

    Google Scholar 

  • Martín C, González-Benito ME (2005) Survival and genetic stability of Dendranthema grandifloraTzevelev shoot apices after cryopreservation by vitrification and encapsulation–dehydration. Cryobiology 51:281–289

    Article  PubMed  Google Scholar 

  • Martín C, Cervera MT, González-Benito MT (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum x morifoliumRamat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166

    Article  PubMed  Google Scholar 

  • Mix-Wagner G, Conner AJ, Cross RJ (2000) Survival and recovery of asparagus shoot tips after cryopreservation using the droplet method. N Z J Crop Hortic Sci 28:283–287

    Article  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Millan T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ Asparagus(Asparagus officinalisL.) population: a Spanish Tetraploid Landrace. Genet Resour Crop Evol 53:729–736. https://doi.org/10.1007/s10722-004-4717-0

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Gil J (2008a) Origin of tetraploid cultivated asparagus landraces inferred from nrDNA ITS polymorphisms. Ann Appl Biol 153:233–241. https://doi.org/10.1111/j.1744-348.2008.00254.x

    CAS  Google Scholar 

  • Moreno R, Espejo JA, Moreno MT, Gil J (2008b) Collection and conservation of ‘Morado de Huetor’ Spanish tetraploid asparagus landrace. Genet Resour Crop Evol 55:773–777. https://doi.org/10.1007/s10722-008-9358-2

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1992) Cryopreservation of Asparagus(Asparagus officinalisL.) embryogenic cells and subsequent plant regeneration by a simple freezing method. Cryo Lett 13:379–388

    Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of Asparagus(Asparagus officinalisL.) embryogenic suspension cells and subsequent plant regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Odake Y, Udagawa A, Saga H, Mii M (1993) Somatic embryogenesis of tetraploid plants from intermodal segments of a diploid cultivar of Asparagus officinalisL. grown in liquid culture. Plant Sci 94:173–177

    Article  CAS  Google Scholar 

  • Ozaki Y, Narikiyo K, Fujita C, Okubo H (2004) Ploidy variation of progenies from intra- and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalisL.). Sex Plant Reprod 17:157–164

    Article  Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). In: The role of biotechnology for the characterization and conservation of crop, forest,animal and fishery genetic resources in developing countries. FAO, Turin, Italy, pp 43–54

    Google Scholar 

  • Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalisL. plants regenerated by organogenesis from long-term callus cultures. Genet Mol Biol 28:423–430

    Article  Google Scholar 

  • Raimondi JP, Camadro EL, Masuelli RW (2001) Assesment of somaclonal variation in Asparagusby RAPD fingerprinting and cytogenetic analyses. Sci Hortic 90:19–29

    Article  Google Scholar 

  • Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic Seeds: Encapsulation of Asexual plant Embryos. Nat Biotechnol 4:791–801

    Article  Google Scholar 

  • Reed BM (1996) Pretreatment strategies for the cryopreservation of plant tissues. In: Normah MN, Narimah MK, Clyde NM (eds) In Vitroconservation of plant genetic resources. Plant Biotechnology Laboratory, Faculty of Life Sciences, University Kebangsaan, Bangi

    Google Scholar 

  • Regalado JJ, Carmona-Martín E, Castro P, Moreno R, Gil J, Encina CL (2015a) Micropropagation of wild species of the genus AsparagusL. and their interspecific hybrids with cultivated A. officinalisL., and verification of genetic stability using EST-SSRs. Plant Cell Tissue Organ Cult 121:501–510

    Article  CAS  Google Scholar 

  • Regalado JJ, Carmona-Martín E, Moreno R, Gil J, Encina CL (2015b) Study of the somaclonal variation produced by different methods of polyploidization with colchicine in Asparagus officinalisl. Plant Cell Tissue Organ Cult 122:31–44

    Article  CAS  Google Scholar 

  • Saha S, Sengupta C, Ghosh P (2015) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulate microshoots of Ocimum kilimandscharicumGuerke. Plant Cell Tissue Organ Cult 120:519–530

    Article  CAS  Google Scholar 

  • Sakai A, Matsumoto T, Hirai D, Niino T (2000) Newly developed encapsulation-dehydration protocol for plant cryopreservation. Cryo Lett 21:53–62

    CAS  Google Scholar 

  • Suzuki T, Kaneko M, Harada T (1997) Increase in freezing resistance of excised shoots tips of Asparagus officinalisL. by preculture on sugar-rich media. Cryobiology 34:264–275

    Article  Google Scholar 

  • Suzuki T, Kaneko M, Harada T, Yakuwa T (1998) Enhanced formation of roots and subsequent promotion of growth of shoots on cryopreserved nodal segments of Asparagus officinalisL. Cryobiology 36:194–205

    Article  CAS  PubMed  Google Scholar 

  • Torres AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia Faba. Theor Appl Genet 85:935–945

    Article  Google Scholar 

  • Uragami A, Sakai A, Nagai M (1990) Cryopreservation of dried axillary buds plantlets of Asparagus officinalisL. grown in vitro. Plant Cell Rep 9:328–331

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Gao X, Chen L, Huo L, Li M (2014) Shoot recovery and genetic integrity of Chrysantemum morifolium shoot tips following cryopreservation by droplet-method. Sci Hortic 176 (2014):330–339

    Article  CAS  Google Scholar 

  • Yang HJ, Cloré WJ (1974) Development of complet plantlets from moderately vigorous shoot of stocks of Asparagusin vitro. HortScience 9:138–139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and planned the experiments. E.C.M. performed the experiments and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to E. Carmona-Martín.

Ethics declarations

Conflict of interest

The authors declare that the research review was conducted in the abscense of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Martín, E., Regalado, J.J., Perán-Quesada, R. et al. Cryopreservation of rhizome buds of Asparagus officinalis L. (cv. Morado de Huétor) and evaluation of their genetic stability. Plant Cell Tiss Organ Cult 133, 395–403 (2018). https://doi.org/10.1007/s11240-018-1392-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1392-y

Keywords

Navigation