Skip to main content
Log in

Gametic embryogenesis through isolated microspore culture in Corylus avellana L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Haploid technology is a valuable plant breeding tool for obtaining homozygosity particularly in woody plants. Hazelnut, the world’s sixth ranking nut tree crop is a monoecious, anemophilous species. It is characterized by a sporophytic incompatibility system that prevents production of homozygous plants with conventional methods, involving several self-pollination cycles. In this study, gametic embryogenesis, in particular isolated microspore culture, was tried with five genotypes. Two culture media were tested and four temperature stress treatments were applied to the isolated microspores that were cultivated at the vacuolated developmental stage. To our knowledge, this is the first report of early embryos being recovered from the five hazelnut genotypes via isolated microspore culture. Analysis of the embryo genotypes using SSR markers demonstrated the embryos had a single allele per each locus whereas the parent cultivar was heterozygous, indicating they developed from haploid microspores. The response to the culture treatments, was, however, genotype-dependent, as previously reported for male gamete embryogenesis in other fruit crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleza P, Juárez J, Hernández M, Pina JA, Ollitrault P, Navarro L (2009) Recovery and characterization of a Citrus clementina Hort. ex Tan. ‘Clemenules’ haploid plant selected to establish the reverence whole Citrus genome sequence. BMC Plant Biol. doi 10.1189/1471-2229-9-110. http://www.biomedcentral.com/1471-2229/110

  • Bàràny I, Testillano PS, Mitykó J, Risueño MC (2001) The switch of the microspore developmental program in Capsicum involves HSP70 expression and leads to the production of haploid plants. Int J Dev Biol 45(S1):S39–S40

    Google Scholar 

  • Bhowmik P, Dirpaul J, Ferrie AM (2011) A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell Tissue Org Cult 106:95–107

    Article  Google Scholar 

  • Binarova P, Hause G, Cenklová V, Cordewener JH, Campagne ML (1997) A short severe heat shock is required to induce embryogenesis in late bicellular pollen of Brassica napus L. Sex Plant Reprod 10:200–208

    Article  Google Scholar 

  • Boccacci P, Akkak A, Bassil NV, Mehlenbacher SA, Botta R (2005) Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellana L.) and their transferability to other Corylus species. Mol Ecol Notes 5:934–937

    Article  CAS  Google Scholar 

  • Boccacci P, Botta R, Rovira M (2008) Genetic diversity of hazelnut (Corylus avellana L.) germplasm in Northeastern Spain. Hort Sci 43(3):667–672

    Google Scholar 

  • Bueno MA, Gómez A, Sepúlveda F, Seguí JM, Testillano PS, Manzanera JA, Risueño MC (2003) Microspore-derived embryos from Quercus suber anthers mimic zygotic embryos and maintain haploidy in long-term anther culture. J Plant Physiol 160:953–960

    Article  CAS  PubMed  Google Scholar 

  • Chiancone B, Germanà MA (2016) Microspore embryogenesis through anther culture in Citrus clementina Hort. ex Tan. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants., Methods in molecular biologySpringer, Berlin, pp 475–487

    Chapter  Google Scholar 

  • Chiancone B, Gniech Karasawa MM, Abdelgalel A, Germana’ MA (2013) Study on anther culture in hazelnut (Corylus avellana L.). In: European frontiers of plant reproduction research 2013. Final conference of the COST action FA0903 “Harnessing Plant Reproduction for Crop Improvement”. Oslo, Norway, 2–4 Oct 2013, pp 77–78

  • Chiancone B, Gniech Karasawa MM, Gianguzzi V, Mohamed AA, Bárány I, Testillano P, Torello Marinoni D, Botta R, Germanà MA (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. ‘Monreal Rosso’ and ‘Nules’. Front Plant Sci. 6:00413. http://dx.doi.org/10.3389/fpls.2015.00413 ISSN = 1664-462X

  • Chu C (1978) The N6 medium and its applications to anther culture of cereal crops. In: Proceedings of symposium on plant tissue culture. Science Press, Peking, pp 43–50

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    Article  CAS  Google Scholar 

  • Custers JBM, Cordewener JHG, NöLlen Y, Dons HJM, Van Lookeren Campagne MM (1994) Temperature controls both gametophytic and sporophytic development in microspore cultures of Brassica napus. Plant Cell Rep 13:267–271

    Article  CAS  PubMed  Google Scholar 

  • Datta SK (2005) Androgenic haploids: factors controlling development and its application in crop improvement. Curr Sci 89(11):1870–1878

    CAS  Google Scholar 

  • Dirks R, Van Dun K, Snoo De, Van Den Berg M, Lelivelt CL, Voermans W, Woudenberg L, De Wit JP, Reinink K, Schut JW (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • FAOSTAT (2015). http://faostat3.fao.org/

  • Ferrie AMR, Caswell KL (2010) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104(3):301–309

    Article  Google Scholar 

  • Ferrie AM, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386

    Article  Google Scholar 

  • Foster BP, Herberle-Bors E, Kasha KJ, Touraev A (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12(8):368–375 ISSN 1360-1385. http://dx.doi.org/10.1016/j.tplants.2007.06.007

  • Germain E (1994) The reproduction of hazelnut (Corylus avellana L.): a review. In: III international congress on Hazelnut, Alba (CN), Italy, 14–18 Sep Acta Hort vol 351, pp 195–209

  • Germanà MA (2006) Doubled haploid production in fruit tree crops. Plant Cell Tiss Org Cult 86:131–146

    Article  Google Scholar 

  • Germanà MA (2009) Haploid and doubled haploids in fruit trees. In: Touraev A, Forster B, Jain M (eds) Advances in haploid production in higher plants. Springer, Berlin, pp 241–263

    Chapter  Google Scholar 

  • Germanà MA (2011a) Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Rep 30:839–857

    Article  PubMed  Google Scholar 

  • Germanà MA (2011b) Anther culture for haploid and doubled haploid production. Plant Cell Tiss Org Cult 104:283–300

    Article  Google Scholar 

  • Germanà MA, Chiancone B (2003) Improvement of Citrus clementina Hort. Ex Tan. microspore-derived embryoid induction and regeneration. Plant Cell Rep 22:181–187

    Article  PubMed  Google Scholar 

  • Germanà MA, Aleza P, Carrera E, Chen C, Chiancone B, Costantino G, Dambier D, Deng X, Federici TC, Froelicher Y, Guo W, Ibáñez V, Juárez J, Kwok K, Luro F, Machado AM, Naranjo AM, Navarro L, Ollitrault P, Ríos G, Roose LM, Talon M, Xu Q, Gmitter GF (2013) Cytological and molecular characterization of three gametoclones of Citrus clementina. BMC Plant Biol 13. ISSN: 1471-2229. doi:10.1186/1471-2229-13-129. http://www.biomedcentral.com/1471-2229/13/129

  • Germanà MA, Scarano MT, Crescimanno FG (1996) First results on isolated microspore culture of citrus. Proc Int Soc Citric 2:882–885

    Google Scholar 

  • Giménez-Abián M, Rozalén A, Carballo J, Botella L, Pincheira J, López-Sáez J, de la Torre C (2004) HSP90 and checkpoint-dependent lengthening of the G2 phase observed in plant cells under hypoxia and cold. Protoplasma 223:191–196

    Article  PubMed  Google Scholar 

  • Höfer M (2004) In vitro androgenesis in apple-improvement of the induction phase. Plant Cell Rep 22(6):365–370

    Article  PubMed  Google Scholar 

  • Höfer M, Flachowsky H (2015) Comprehensive characterization of plant material obtained by in vitro androgenesis in apple. Plant Cell Tiss Organ Cult 122:617–628

    Article  Google Scholar 

  • Höfer M, Touraev A, Heberle-Bors E (1999) Induction of embryogenesis from isolated apple microspores. Plant Cell Rep 18:1012–1017

    Article  Google Scholar 

  • Hormaza H, Herrero M (1996) Male gametophytic selection as a plant-breeding tool. Sci Hort 65:321–333

    Article  Google Scholar 

  • Houssain T, Tausend P, Graham G, Ho J (2007) Registration of IBM2 SYN10 doubled haploid mapping population of maize. J Plant Regist 1:81

    Article  Google Scholar 

  • Kafkas S, Dogan Y (2009) Genetic characterization of hazelnut (Corylus avellana L.) cultivars from Turkey using molecular markers. Hort Sci 44(6):1557–1561

    Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 36:2493–2507

    Article  Google Scholar 

  • Kumlehn J, Serazetdinova L, Hensel G, Becker DE, Lörz H (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens. Plant Biotech J 4:251–261

    Article  CAS  Google Scholar 

  • Kunzel GL, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leeuwen H, Monfort A, Zhang H, Puigdomenech P (2003) Identification and characterization of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51(5):703–718

    Article  PubMed  Google Scholar 

  • Ma R, Yang-Dong G, Seppo P (2004) Comparison of anther and microspore culture in the embryogenesis and regeneration of rye (Secale cereale). Plant Cell Tissue Organ Cult 76:147–157

    Article  Google Scholar 

  • Martins S, Rovira M, Silva AP, Carnide (2010) Pollen incompatibility in Portuguese hazelnut landraces. In: XXVIII international horticultural congress on science and horticulture for people (IHC2010), Acta Horticulture, p 932

  • Nitsch C (1977) Culture of isolate microspore. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer, Berlin, pp 268–278

    Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85

    Article  CAS  PubMed  Google Scholar 

  • Ochatt SJ, Revilla MA (2016) From stress to embryos: some of the problems for induction and maturation of somatic embryos. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants., Methods in molecular biologySpringer, Berlin, pp 523–535

    Chapter  Google Scholar 

  • Ochatt S, Pech C, Grewal R, Conreux C, Lulsdorf M, Jacas L (2009) Abiotic stress enhances androgenesis from isolated microspores of some legume species (Fabaceae). J Plant Physiol 166:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Prem D, Solís M-T, Bárány I, Rodríguez-Sanz H, Risueño MC, Testillano PS (2012) A new microspore embryogenesis system under low temperature which mimics zygotic embryogenesis initials, expresses auxin and efficiently regenerates doubled-haploid plants in Brassica napus. BMC Plant Biol. doi:10.1186/1471-2229-12-127

    PubMed Central  PubMed  Google Scholar 

  • Ribalta FM, Croser JS, Ochatt SJ (2012) Flow cytometry enables identification of sporophytic eliciting stress treatments in gametic cells. J Plant Physiol 169(1):104–110

    Article  CAS  PubMed  Google Scholar 

  • Rovira M, Aleta N, Germain E, Arus P (1993) Inheritance and linkage relationships of ten isozyme genes in hazelnut. Theor Appl Genet 86:322–328

    CAS  PubMed  Google Scholar 

  • Seguí-Simarro JM, Nuez F (2008) Pathways to doubled haploidy: chromosome doubling during androgenesis. Cytogenet Genome Res 120:358–369

    Article  PubMed  Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiol Plant 127:519–534

    Article  CAS  Google Scholar 

  • Soriano M, Li H, Boutilier K (2013) Microspore embryogenesis: establishment of the embryo identity and pattern in culture. Plant Reprod 26:181–193

    Article  PubMed Central  PubMed  Google Scholar 

  • Sopory S, Munshi M (1996) Anther culture. In: Mohan JM et al (eds) In vitro haploid production in higher plants, vol 1. Kluwer, Dordrecht, pp 145–176

    Chapter  Google Scholar 

  • Szareijo I, Foster BP (2006) Doubled haploidy and induced mutation. Euphytica 158:359–370

    Article  Google Scholar 

  • Talón M, Gmitter FG (2008) Citrus genomics. Int J Plant Genomics. doi:10.1155/2008/528361

    PubMed Central  PubMed  Google Scholar 

  • Touraev A, Ilham A, Vicente O, Heberle-Bors E (1996a) Stress induced microspore embryogenesis from tobacco microspores: an optimized system for molecular studies. Plant Cell Rep 15:561–565

    Article  CAS  PubMed  Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996b) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Wang Z, Tarantino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL (2001) Rice ESTs with disease-resistance gene or defense-response gene like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics 265:302–310

    Article  CAS  PubMed  Google Scholar 

  • Zhang KP, Zhao L, Tian JC, Chen GF, Jiang XL, Liu B (2008) A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties. J Integr Plant Biol 50(8):941–950

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Germanà.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gniech Karasawa, M.M., Chiancone, B., Gianguzzi, V. et al. Gametic embryogenesis through isolated microspore culture in Corylus avellana L.. Plant Cell Tiss Organ Cult 124, 635–647 (2016). https://doi.org/10.1007/s11240-015-0921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0921-1

Keywords

Navigation