Skip to main content

Advertisement

Log in

Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A vitrification method enabled efficient cryopreservation of embryogenic tissue (ETs) of Norway spruce (Picea abies L.) at −196 °C in liquid nitrogen (LN). Correctly formed, normal somatic embryos were generated from ETs that had been thawed after removal from LN. The pregrowth-dehydration method involved preculture of ETs with sucrose (0.25–1.00 M) in the presence or absence of 10 μM abscisic acid (ABA), followed by air-drying for 2 h and rapid freezing in LN. Pretreatment of ETs with both sucrose and ABA promoted ET growth after preculture and thawing more effectively than treatment with sucrose alone. Survival of ETs after thawing from LN using both sucrose and ABA was 54.4 % compared to pretreatment with sucrose alone which was 20 %. Addition of ABA in the preculture medium also improved the ability of ETs to form cotyledonary stage somatic embryos. The somatic embryos, which had normal shoot and root apices and the correct number of cotyledons, were indistinguishable from regenerants obtained from control cultures. Genetic analysis of control and cryopreserved ETs, as well as somatic embryos derived from cryopreserved ETs, indicated that the cryopreservation method had no effect on any of the five microsatellite loci (SpAGC1, SpAGC2, SpAGG3, SpAC1H8, and SpAC1F7) tested. The cryopreservation protocol outlined should enable the long-term storage of valuable clones of Norway spruce in LN, potentially for hundreds of years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Burg K, Hristoforoglu K, Fluch S, Hohl A, Burg A, Schmidt J (1999) Analysis of the fidelity of DNA replication in embryogenic cultures of Norway spruce. In: Espinel S, Ritter E (eds) Proceedings of application of biotechnology to forest genetics. Biofor 99 Vitoria-Gasteiz, Spain, pp 231–235

    Google Scholar 

  • Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698

    Article  PubMed  CAS  Google Scholar 

  • Chmielarz P (2009a) Cryopreservation of dormant European ash (Fraxinus excelsior) orthodox seeds. Tree Physiol 29:1279–1285

    Article  PubMed  CAS  Google Scholar 

  • Chmielarz P (2009b) Cryopreservation of dormant orthodox seeds of forest trees: mazzard cherry (Prunus avium L.). Ann Forest Sci 66:405p1–405p9

    Google Scholar 

  • Chmielarz P, Grenier-de March G, de Boucaud MT (2005) Cryopreservation of Quercus robur L. embryogenic calli. Cryoletters 26:349–355

    PubMed  CAS  Google Scholar 

  • Chmielarz P, Michalak M, Pałucka M, Wasileńczyk U (2011) Successful cryopreservation of Quercus robur plumules. Plant Cell Rep 30:1405–1414

    Article  PubMed  CAS  Google Scholar 

  • Cloutier D, Rioux D, Beaulieu J, Schoen DJ (2003) Somatic stability of microsatellite loci in Eastern white pine, Pinus strobus L. Heredity 90:247–252

    Article  PubMed  CAS  Google Scholar 

  • Cyr DR, Lazaroff WR, Grimes SMA, Quan G, Bethune TD, Dunstan DI, Roberts DR (1994) Cryopreservation of interior spruce (Picea glauca engelmanni complex) embryogenic cultures. Plant Cell Rep 13:574–577

    Article  Google Scholar 

  • DeVerno LL, Park YS, Bonga JM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce (Picea glauca (Moench) Voss.). Plant Cell Rep 18:948–953

    Article  CAS  Google Scholar 

  • Engelmann F (2004) Cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Engelmann F, Engles J, Dullo E (2003) The development of complementary strategies for the conservation of plant genetic resources using in vitro and cryopreservation methods. In: Chaudhury R, Pandey R, Malik SK, Mal B (eds) In vitro conservation and cryopreservation of tropical fruit species. IPGRI Office for South Asia and NBPGR, New Delhi, pp 37–48

    Google Scholar 

  • Fang JY, Sacandé M, Pritchard H, Wetten A (2009) Influence of freezable/non-freezable water and sucrose on the viability of Theobroma cacao somatic embryos following desiccation and freezing. Plant Cell Rep 28:883–889

    Article  PubMed  CAS  Google Scholar 

  • Fernandes P, Rodriguez E, Pinto G, Roldán-Ruiz I, De Loose M, Santos C (2008) Cryopreservation of Quercus suber somatic embryos by encapsulation-dehydration and evaluation of genetic stability. Tree Physiol 28:1841–1850

    Article  PubMed  CAS  Google Scholar 

  • Fourré JL, Berger P, Niquet L, André P (1997) Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94:159–169

    Article  Google Scholar 

  • Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryoletters 29:135–144

    PubMed  Google Scholar 

  • Glaubitz JC, Moran GF (2000) Genetic tools: the use of biochemical and molecular markers. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics: principles and practice. CSIRO Publishing, Collingwood, pp 39–59

    Google Scholar 

  • Grenier-de March G, de Boucaud MT, Chmielarz P (2005) Cryopreservation of Prunus avium L. embryogenic tissues. Cryoletters 26:341–348

    PubMed  CAS  Google Scholar 

  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318

    Article  CAS  Google Scholar 

  • Häggman HM, Ryynänen LA, Aronen TS, Krajnakova J (1998) Cryopreservation of embryogenic cultures of Scots pine. Plant Cell, Tissue Organ Cult 54:45–53

    Article  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryoletters 25:3–22

    PubMed  Google Scholar 

  • Harvengt L, Trontin JF, Reymont I, Canlet F, Paques M (2001) Molecular evidence of true-to-type propagation of 3-year old Norway spruce through somatic embryogenesis. Planta 213:828–832

    Article  PubMed  CAS  Google Scholar 

  • Hazubska-Przybył T, Bojarczuk K (2008) Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens ‘Glauca’ and P. breweriana). Acta Soc Bot Pol 77:89–199

    Google Scholar 

  • Hazubska-Przybył T, Chmielarz P, Michalak M, Bojarczuk K (2010) Cryopreservation of embryogenic tissues of Picea omorika (Serbian spruce). Plant Cell, Tissue Organ Cult 102:35–44

    Article  Google Scholar 

  • Heinz B, Schmidt J (1995) Monitoring genetic fidelity vs somaclonal variation in Norway Spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica 85:341–345

    Article  Google Scholar 

  • Helmersson A, Von Arnold S, Burg K, Bozhkov PV (2004) High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce. Tree Physiol 24:1181–1186

    Article  PubMed  CAS  Google Scholar 

  • Helmersson A, Jansson G, Bozhkov PV, Von Arnold S (2008) Genetic variation in microsatellite stability of somatic embryo plants of Picea abies: a case study using six unrelated full-sib families. Scand J Forest Res 23:2–11

    Article  Google Scholar 

  • Isabel N, Boivin R, Levasseur C, Charest PM, Bousquet J, Tremblay FM (1996) Occurrence of somaclonal variation among somatic embryo-derived white spruces (Picea glauca. Pinaceae). Am J Bot 83:1121–1130

    Article  Google Scholar 

  • Jitsuyama Y, Suzuki T, Harada T, Fujikawa S (2002) Sucrose incubation increases freezing tolerance of Asparagus (Asparagus officinalis L.) embryogenic cell suspensions. Cryoletters 23:103–112

    PubMed  CAS  Google Scholar 

  • Kendall EJ, Kartha KK, Qureshi JA, Chermak P (1993) Cryopreservation of immature spring wheat zygotic embryos using an abscisic acid pretreatment. Plant Cell Rep 12:89–94

    Article  CAS  Google Scholar 

  • Kim HM, Shin JH, Sohn JK (2006) Cryopreservation of somatic embryos of the herbaceous peony (Peonia lactiflora Pall.) by air drying. Cryobiology 53:69–74

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska K, Ward C, Cheliak WM (1992) Cryopreservation and plant regeneration from embryogenic cultures of larch (Larix x eurolepis) and black spruce (Picea mariana). J Exp Bot 43:73–79

    Article  CAS  Google Scholar 

  • Kong L, Attree SM, Evans DE, Binarova P, Yeung EC, Fowke LC (1999) Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Jain SM, Gupta PK, Pramod PK, Newton RJ (eds) Somatic embryogenesis in woody plants, vol 4. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 1–28

  • Kunkel TA, Benek R (2000) DNA replication fidelity. Annu Rev Biochem 69:497–529

    Article  PubMed  CAS  Google Scholar 

  • Label P, Lelu MA (2000) Exogenous abscisic acid fate during maturation of hybrid larch (Larix x leptoeuropaea) somatic embryos. Physiol Plant 109:456–462

    Article  CAS  Google Scholar 

  • Lambardi M, Ozudogru A, Benelli C (2008) Cryopreservation of embryogenic cultures. In: Reed BM (ed) Plant Cryopreservation: a practical guide. Springer, USA, pp 177–194

    Chapter  Google Scholar 

  • Lian C, Oishi R, Miyashita N, Hogetsu T (2004) Hight somatic instability of a microsatellite locus in a clonal tree Robinia pseudoacacia. Theor Appl Genet 108:836–841

    Article  PubMed  CAS  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carrota L.). Plant Cell Rep 4:325–328

    Article  CAS  Google Scholar 

  • Lopes T, Pinto G, Loureiro J, Costa A, Santos C (2006) Determination of genetic stability in long-term somatic embryogenic cultures and derived plantlets of cork oak using microsatellite markers. Tree Physiol 26:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Malabadi RB, Nataraja K (2006) Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg. Trees. In Vitro Cell Dev Biol Plant 42:152–159

    Article  Google Scholar 

  • Martínez MT, Ballester A, Vieitez AM (2003) Cryopreservation of embryogenic cultures of Quercus robur using desiccation and vitrification procedures. Cryobiology 46:182–189

    Article  PubMed  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira MM, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  PubMed  CAS  Google Scholar 

  • Mikuła A (2008) Krioprezerwacja jako metoda zachowania zdolności życiowych komórek i tkanek roślinnych [Cryopreservation as a method to maintain the life processes of cells and plant tissues]. Biotechnologia 2:41–57

    Google Scholar 

  • Misra S (1994) Conifer zygotic embryogenesis, somatic embryogenesis and seed germination: biochemical and molecular advances. Seed Sci Res 4:357–384

    Article  CAS  Google Scholar 

  • Park YS, Barret JD, Bonga M (1998) Application of somatic embryogenesis in high: value clonal forestry: deployment, genetic control and stability of cryopreserved clones. In Vitro Cell Dev Biol 34:231–239

    Google Scholar 

  • Pennycooke JC, Towill LE (2000) Cryopreservation of shoot tips from in vitro plants of sweet potato (Ipomoea batatas Lam.) by vitrification. Plant Cell Rep 19:733–739

    Article  CAS  Google Scholar 

  • Percy RE, Livingstone NJ, Moran JA, von Aderkas P (2001) Desiccation, cryopreservation and water relations parameters of white spruce (Picea glauca) and interior spruce (Picea glauca × engelmanniii complex) somatic embryos. Tree Physiol 2:1303–1310

    Article  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419

    Article  PubMed  CAS  Google Scholar 

  • Popova EV (2010) Cryopreservation of coriander (Coriandrum sativum L.) somatic embryos using sucrose preculture and air desiccation. Sci Hort 124:522–528

    Article  CAS  Google Scholar 

  • Pritchard HW, Nadarajan J (2008) Cryopreservation of orthodox (desiccation tolerant) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, LLC, pp 485–494

    Chapter  Google Scholar 

  • Rahman MH, Rajola OP (2001) Microsatellite DNA somaclonal variation in micropropagated trembling aspen (Populus tremuloides). Plant Cell Rep 20:531–536

    Article  CAS  Google Scholar 

  • Reaney MJT, Gusta LV (1987) Factors influencing the induction of freezing tolerance by abscisic acid in cell suspension cultures of Bromus inermis Leyss and Medicago sativa L. Plant Physiol 83:423–427

    Article  PubMed  CAS  Google Scholar 

  • Reed BM (1993) Responses to ABA and cold acclimation are genotype dependent for cryopreserved black-berry and raspberry meristems. Cryobiology 30:179–184

    Article  Google Scholar 

  • Richards CM, Reilley A, Touchell D, Antolin MF, Walters C (2004) Microsatellite primers for Texas ild rice (Zizania texana) and preliminary test of the impact of cryogenic storage on allele frequency at these loci. Conserv Genet 5:853–859

    Article  CAS  Google Scholar 

  • Robertson AJ, Ishikawa M, Gusta LV, McKenzie S (1994) Abscisic acid-induced heat tolerance in Bromus inermis cell cultures. Plant Physiol 105:181–190

    Article  PubMed  CAS  Google Scholar 

  • Ryynanen L (1998) Effect of abscisic acid, cold hardening and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birch. Cryobiology 36:32–39

    Article  PubMed  CAS  Google Scholar 

  • Sakai A (2000) Development of cryopreservation techniques. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current Research Progress and Applications, JIRCAS, IPGRI, Rome, pp 1–7

    Google Scholar 

  • Smulders MJM, Rus-Kortekass W, Visman B (1995) Tissue culture-induced DNA methylation polymorphism in repetitive DANN of tomato calli and regenerated plants. Theor Appl Genet 91:1257–1264

    Article  CAS  Google Scholar 

  • Suzuki M, Ishikawa M, Akihama T (1998) A novel preculture metod for the induction of desiccation tolerance in gentian axillary buds for cryopreservation. Plant Sci 135:69–76

    Article  CAS  Google Scholar 

  • Suzuki M, Ishikawa M, Okuda H, Noda K, Kishimoto T, Nakamura T, Ogiwara I, Shimura I, Akihama T (2006) Physiological changes in gentian axillary buds during two-step preculturing with sucrose that conferred high levels of tolerance to desiccation and cryopreservation. Ann Bot 97:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Thierry C, Tessereau H, Florin B, Meschine MC, Pétiard V (1997) Role of sucrose for the aquisition of tolerance to cryopreservation of carrot somatic embryos. Cryoletters 18:283–292

    CAS  Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Verlaysen H, Samyn G, Van Bockstaele E, Debergh P (2004) Evaluation of analytical techniques to predict viability after cryopreservation. Plant Cell, Tissue Organ Cult 77:11–21

    Article  Google Scholar 

  • Walters C, Wesley-Smith J, Crane J, Hill LM, Chmielarz P, Pammenter N, Berjak P (2008) Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, LLC, pp 465–484

    Chapter  Google Scholar 

  • Wang ZY, Legris G, Nagel J, Potrykus I, Spangenberg G (1994) Cryopreservation of embryogenic cell suspensions in Festuca and Lolium species. Plant Sci 103:93–106

    Article  CAS  Google Scholar 

  • Wilhelm E, Hristoforoglu K, Fluch S, Burg K (2005) Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). Plant Cell Rep 23:790–795

    Article  PubMed  CAS  Google Scholar 

  • Zhu GY, Geuns JMC, Dussert S, Swennen R, Panis B (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effect on cryopreservation. Physiol Plant 128:80–94

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Centre in Krakow (Grant no. N N309 130837).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Chmielarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazubska-Przybył, T., Chmielarz, P., Michalak, M. et al. Survival and genetic stability of Picea abies embryogenic cultures after cryopreservation using a pregrowth-dehydration method. Plant Cell Tiss Organ Cult 113, 303–313 (2013). https://doi.org/10.1007/s11240-012-0270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0270-2

Keywords

Navigation