Skip to main content
Log in

Copper-induced oxidative stress in Alternanthera philoxeroides callus

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The callus of Alternanthera philoxeroides, an emerging plant, was subjected to different concentrations of Cu2+ (0, 0.05, 0.1, 0.2, 0.6, 0.8, and 1 mM) for a period of 5 days and the contents of soluble protein and malondialdehyde (MDA), activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (G-POD, EC 1.11.1.7), levels of reactive oxygen species (ROS, such as O −∙2 and H2O2) were determined. Treatment with 0.05 mM Cu2+ enhanced the content of soluble protein and reduced levels of O −∙2 and H2O2. As the Cu2+ concentration exceeded 0.1 mM, the content of soluble protein decreased greatly and the amounts of two polypeptides (apparent molecular weights 45 and 39 kDa, respectively) became visible in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE); SOD activity was enhanced markedly owing to the accumulation of O −∙2 , while POD and CAT activities increased alternately in response to increased H2O2 content. Because of the congenerous function of POD and CAT, the H2O2 content dropped to a low level finally. An interesting result was that the MDA content decreased with the increasing concentration of Cu2+. The results of this study indicated that antioxidant enzymes (SOD, POD, and CAT) protected A. philoxeroides callus against copper stress efficiently, especially for SOD. Whether there was another protective mechanism in A. philoxeroides callus or not requires further research. The critical value of copper on A. philoxeroides callus was 0.1 mM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a–c
Fig. 3a, b
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241. doi:10.1111/j.1399-3054.1992.tb04728.x

    Article  CAS  Google Scholar 

  • Aust SD, Morehouse LA, Thomas CE (1985) Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3–25. doi:10.1016/0748-5514(85)90025-X

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Buckingham GR (1996) Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61:232–243

    Google Scholar 

  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97)00115-5

    Article  CAS  Google Scholar 

  • Chatzissavvidis C, Veneti G, Papadakis I, Therios I (2008) Effect of NaCl and CaCl2 on the antioxidant mechanism of leaves and stems of the rootstock CAB-6P (Prunus cerasus L.) under in vitro conditions. Plant Cell Tissue Organ Cult 95:37–45. doi:10.1007/s11240-008-9411-z

    Article  CAS  Google Scholar 

  • Cui X-H, Murthy HN, Wu C-H, Paek K-Y (2010) Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult 103:7–14. doi:10.1007/s11240-010-9747-z

    Article  CAS  Google Scholar 

  • Cuny D, Van Haluwyn C, Shirali P, Zerimech F, Jérôme L, Haguenoer JM (2004) Cellular impact of metal trace elements in terricolous lichen Diploschistes muscorum (Scop.) R. Sant.—Identification of oxidative stress biomarkers. Water Air Soil Pollut 152:55–69. doi:10.1023/B:WATE.0000015332.94219.ff

    Article  CAS  Google Scholar 

  • Dewez D, Geoffroy L, Vernet G, Popovic R (2005) Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus. Aquatic Toxicol 74:150–159. doi:10.1016/j.aquatox.2005.05.007

    Article  CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2004) Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquat Toxicol 66:141–147. doi:10.1016/j.aquatox.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  • Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer Verlag, Berlin, pp 73–97

    Google Scholar 

  • Ding BZ, Shi GX, Xu Y, Hu JZ, Xu QS (2007) Physiological responses of Alternanthera philoxeroides (Mart.) Griseb leaves to cadmium stress. Environ Pollut 147:800–803. doi:10.1016/j.envpol.2006.10.016

    Article  PubMed  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tissue Organ Cult 71:125–131. doi:10.1023/A:1019917705111

    Article  CAS  Google Scholar 

  • Fridovich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11. doi:10.1016/0003-9861(86)90526-6

    Article  PubMed  CAS  Google Scholar 

  • Gonnelli C, Galardi F, Gabbrielli R (2001) Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiol Plant 113:507–514. doi:10.1034/j.1399-3054.2001.1130409.x

    Article  CAS  Google Scholar 

  • Góth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151. doi:10.1016/0009-8981(91)90067-M

    Article  PubMed  Google Scholar 

  • Gu W, Shi G-X, Zhang C-Y, Wang W, Xu Q-S, Xu N, Zeng X-M, Zhang X-L, Zhou H-W (2002) Toxic effects of Hg2+, Cd2+ and Cu2+ on photosynthetic systems and protective enzyme systems of Potamogeton crispus. J Plant Physiol Mol Biol 28:69–74

    CAS  Google Scholar 

  • Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332. doi:10.1016/S0269-7491(98)00102-X

    Article  CAS  Google Scholar 

  • Gupta M, Rai UN, Tripathi RD, Chandra P (1995) Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (l. f.) Royle. Chemosphere 30:2011–2020. doi:10.1016/0045-6535(95)00075-J

    Article  CAS  Google Scholar 

  • Gupta M, Sinha S, Chandra P (1996) Copper-induced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH. Ecotoxicology 5:23–33. doi:10.1007/BF00116321

    Article  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68)90654-1

    Article  PubMed  CAS  Google Scholar 

  • Hou WH, Chen X, Song GL, Wang QH, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69. doi:10.1016/j.plaphy.2006.12.005

    Article  PubMed  CAS  Google Scholar 

  • Hu JZ, Shi GX, Xu QS, Wang X, Yuan QH, Du KH (2007) Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physiol 54:414–419

    Article  CAS  Google Scholar 

  • Jones GJ, Nichols PD, Johns RB, Smith JD (1987) The effect of mercury and cadmium on the fatty acid and sterol composition of the marine diatom Asterionella glacialis. Phytochemistry 26:1343–1348. doi:10.1016/S0031-9422(00)81809-9

    Article  CAS  Google Scholar 

  • Li TY, Xiong ZT (2004) A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Environ Toxicol 19:95–102. doi:10.1002/tox.20000

    Article  PubMed  CAS  Google Scholar 

  • Lin ZF, Li SS, Lin GZ (1988) Senescing leaves and chloroplasts in relation to lipid peroxidation. Acta Phytophysiol Sin 14:16–22

    CAS  Google Scholar 

  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2010) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:41–49. doi:10.1007/s11240-010-9802-9

    Article  Google Scholar 

  • Lou L-Q, Shen Z-G, Li X-D (2004) The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot 51:111–120. doi:10.1016/j.envexpbot.2003.08.002

    Article  CAS  Google Scholar 

  • Maehly AC (1955) Plant peroxidase. Methods Enzymol 2:801–813. doi:10.1016/S0076-6879(55)02307-0

    Article  Google Scholar 

  • Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104. doi:10.1016/S0300-483X(00)00306-1

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9

    Article  PubMed  CAS  Google Scholar 

  • Mohan BS, Hosetti BB (2006) Phytotoxicity of cadmium on the physiological dynamics of Salvinia natans L. grown in macrophyte ponds. J Environ Biol 27:701–704

    PubMed  CAS  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzałka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889. doi:10.1016/S0168-9452(01)00478-2

    Article  CAS  Google Scholar 

  • Rama Devi S, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: Response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165. doi:10.1016/S0168-9452(98)00161-7

    Article  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31:19–48. doi:10.1007/BF02738153

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson G, Öquist G (1980) Effects of copper chloride on photosynthetic electron transport and chlorophyll-protein complexes of Spinacia oleracea. Plant Cell Physiol 21:445–454

    CAS  Google Scholar 

  • Shi G-X, Xu Q-S, Xie K-B, Xu N, Zhang X-L, Zeng X-M, Zhou H-W, Zhu L (2003) Physiology and ultrastructure of Azolla imbricata as affected by Hg2+ and Cd2+ toxicity. Acta Bot Sin 45:437–444

    CAS  Google Scholar 

  • Singh PK, Tewari RK (2003) Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–112

    PubMed  CAS  Google Scholar 

  • Singh S, Eapen S, D’Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 62:233–246. doi:10.1016/j.chemosphere.2005.05.017

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Gupta M, Chandra P (1996) Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L). Environ Toxicol Water Qual 11:105–112. doi:10.1002/(SICI)1098-2256(1996)11:2<105:AID-TOX5>3.0.CO;2-D

    Article  CAS  Google Scholar 

  • Stewart RRC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Li LS, Liu MQ, Wang MJ, Ding MQ, Deng SR, Lu CF, Zhou XY, Shen X, Zheng XJ, Chen SL (2010) Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars. Plant Cell Tissue Organ Cult 103:205–215. doi:10.1007/s11240-010-9768-7

    Article  CAS  Google Scholar 

  • Taddei S, Bernardi R, Salvini M, Pugliesi C, Durante M (2007) Effect of copper on callus growth and gene expression of in vitro-cultured pith explants of Nicotiana glauca. Plant Biosyst 141:194–203. doi:10.1080/11263500701401521

    Google Scholar 

  • Wang JZ, Fan M (2002) Hand book of protein technology. Science Press, Beijing

    Google Scholar 

  • Wang A-G, Luo G-H (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57

    CAS  Google Scholar 

  • Wang BR, Li WG, Wang JB (2005) Genetic diversity of Alternanthera philoxeroides in China. Aquat Bot 81:277–283. doi:10.1016/j.aquabot.2005.01.004

    Article  Google Scholar 

  • Weckx JEJ, Clijsters HMM (1996) Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiol Plant 96:506–512. doi:10.1111/j.1399-3054.1996.tb00465.x

    Article  CAS  Google Scholar 

  • Xu Q-S, Shi G-X, Du K-H, Zhang X-L, Zeng X-M (2003) Toxic effect of Cd2+ treatment on protective enzyme activity and ultrastructure in leaf cells of Potamogeton crispus. Acta Hydrobiol Sin 27:584–589

    CAS  Google Scholar 

  • Xu QS, Hu JZ, Xie KB, Yang HY, Du KH, Shi GX (2010) Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater 173:186–193. doi:10.1016/j.jhazmat.2009.08.067

    Article  PubMed  CAS  Google Scholar 

  • Yang YL, Shi RX, Wei XL, Fan Q, An LZ (2010) Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr. Plant Cell Tissue Organ Cult 102:387–395. doi:10.1007/s11240-010-9745-1

    Article  CAS  Google Scholar 

  • Yuan Y, Sheng J-P, Wang H-D, Wang Z-Y, Ru B-G (2004) Callus induction and root differentiation from Alternanthera philoxeroides. Acta Hydrobiol Sin 28:622–628

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by project 30870139 of the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-xin Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Xy., Shi, Gx., Wang, J. et al. Copper-induced oxidative stress in Alternanthera philoxeroides callus. Plant Cell Tiss Organ Cult 106, 243–251 (2011). https://doi.org/10.1007/s11240-010-9914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9914-2

Keywords

Navigation