Skip to main content
Log in

Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The halophyte Leymus chinensis (Trin.) is a perennial rhizome grass (tribe Gramineae) that is widely distributed in China, Mongolia and Siberia, where it is produced as a forage product. In this report, we establish a highly reproducible plant regeneration system through somatic embryogenesis. Two explants, mature seeds and leaf base segments were used; these parts displayed different responses to combinations of growth factors that affect embryogenic callus induction, callus type optimization and plant regeneration. The highest callus induction frequency was obtained on Murashige and Skoog (MS) medium supplemented with 2.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) in the presence of 5.0 mg l−1 l-glutamic acid. The inclusion of 5.0 mg l−1 l-glutamic acid was found to significantly promote primary callus induction, embryogenic callus formation and callus status improvement. Subculturing on maintenance medium for 1–2 months before plant regeneration was found to be essential for the optimization of callus type and the maturation of embryogenic callus. Callus relative water content and growth rate were simultaneously investigated during callus maintenance, and found to possibly be related to callus type. Shoots were differentiated from the embryogenic callus on the optimal medium with MS salts containing 0.2–0.5 mg l−1 α-naphthalene acetic acid (NAA), 2.0 mg l−1 kinetin (Kn) and 2.0 g l−1 casamino acids in 71.0 and 69.2% of wild-type (WT) and Jisheng No.1 (JS) plants, respectively. Plant regeneration was variable depending on NAA levels, and the addition of casamino acids stimulated the maturation of embryogenic callus and plant regeneration. Transferring callus with shoots onto half-strength MS medium resulted in rooting within 1 week. The growth of regenerated plants was also surveyed in the field. This is the first report of plant regeneration through somatic embryogenesis from mature seeds and leaf base segments of L. chinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PAT:

Phosphinothricin acetyltransferase

LEA:

Late embryogenesis abundant

2,4-D:

2,4-Dichlorophenoxyacetic acid

Kn:

Kinetin

BA:

6-Benzyladenine

NAA:

α-Naphthalene acetic acid

WT:

Wild-type

JS:

Jisheng no. 1

MS:

Murashige and Skoog

References

  • Akutsu M, Ishizaki T, Sato H (2004) Transformation of the monocotyledonous Alstroemeria by Agrobacterium tumefaciens. Plant Cell Rep 22:561–568

    Article  CAS  PubMed  Google Scholar 

  • Al-Khayri JM, Huang FH, Thompson LF, King JW (1989) Plant regeneration of Zoysiagrass from embryo derived callus. Crop Sci 29:1324–1325

    Article  Google Scholar 

  • Ammirato PV (1983) Embryogenesis. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y (eds) Handbook of plant cell culture. Macmillan, New York, pp 82–123

    Google Scholar 

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable, embryogenic maize callus and the involvement of l-proline. Planta 164:207–214

    Article  CAS  Google Scholar 

  • Artunduaga IR, Taliaferro CM, Johnson BL (1989) Induction and growth of callus from immature inflorescences of ‘Zebra’ bermudagrass as affected by casein hydrolysates and 2, 4-D concentration. In Vitro Cell Dev Biol 25:753–756

    Article  CAS  Google Scholar 

  • Bai Y, Qu R (2001) Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescue. Plant Breed 120:239–242

    Article  Google Scholar 

  • Batista D, Fonseca S, Serrazina S, Figueiredo A, Pais MS (2008) Efficient and stable transformation of hop (Humulus lupulus L.) var. Eroica by particle bombardment. Plant Cell Rep 27:1185–1196

    Article  CAS  PubMed  Google Scholar 

  • Benkirane H, Sabounji K, Chlyah A, Chlyah H (2000) Somatic embryogenesis and plant regeneration from fragments of immature inflorescence and coleoptiles of durum wheat. Plant Cell Tiss Organ Cult 61:107–113

    Article  Google Scholar 

  • Cardona CA, Duncan RR (1997) Callus induction and high efficiency plant regeneration via somatic embryogenesis in Paspalum. Crop Sci 37:1297–1302

    Article  Google Scholar 

  • Chand S, Sahrawat AK (2001) Stimulatory effect of partial desiccation on plant regeneration in Indica rice (Oryza sativa L.). J Plant Biochem Biotechnol 10:43–47

    CAS  Google Scholar 

  • Chen CH, Chen LF, Lo PF, Ross JG (1982) Plant regeneration from cultured immature inflorescences of orchardgrass (Dactylis glomerata L.). Euphytica 31:19–23

    Article  Google Scholar 

  • Christou P, Ford TL, Kofron M (1992) The development of a variety independent gene transfer method for rice. Tibtech 10:239–246

    Google Scholar 

  • Dhandapani M, Hong SB, Aswath CR, Kim DH (2008) Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes. In Vitro Cell Dev Biol Plant 44:8–13

    Article  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165:322–332

    Article  CAS  Google Scholar 

  • Hanning GE, Conger BV (1982) Embryoid and plantlet formation from leaf segments of Dactylis glomerata L. Theor Appl Genet 63:155–159

    Article  Google Scholar 

  • Haydu Z, Vasil IK (1981) Somatic embryogenesis and plant regeneration from leaf tissues and anthers of Pennisetum purpureum Schum. Theor Appl Genet 59:269–273

    Article  Google Scholar 

  • He Y, Guo XL, Lu R, Niu B, Pasapula V, Hou P, Cai F, Xu Y, Chen F (2009) Changes in morphology and biochemical indices in browning callus derived from Jatropha curcas hypocotyls. Plant Cell Tiss Organ Cult 98:11–17. doi:10.1007/s11240-009-9533-y

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Horlemann C, Schwekendiek A, Höhnle M, Weber G (2003) Regeneration and Agrobacterium-mediated transformation of hop (Humulus lupulus L.). Plant Cell Rep 22:210–217

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Wei ZM (2004) High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep 22:793–800. doi:10.1007/s00299-003-0748-9

    Article  CAS  PubMed  Google Scholar 

  • Huang ZH, Zhu JM, Mu XJ, Lin JX (2004) Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann Bot 93:295–301. doi:101093/aob/mch044

    Article  PubMed  Google Scholar 

  • Iida A, Yamashita Y, Yamada Y, Morikawa H (1991) Efficiency of particle-bombardment-mediated transformation is influenced by cell stage in synchronized cultured cells of tobacco. Plant Physiol 97:1585–1587

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Plaha P, Park JY, Hong CP, Lee IS, Yang ZH, Jiang GB, Kwak SS, Liu SK, Lee JS, Kim YA, Lim YP (2006) Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Sci 170:1081–1086. doi:10.1016/j.plantsci.2006.01.002

    Article  CAS  Google Scholar 

  • Kamada H, Harada H (1979) Studies on the organogenesis in carrot tissue cultures II. Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Z Pflanzenphysiol 91:453–463

    CAS  Google Scholar 

  • Kang L, Han XG, Zhang ZB, Sun JX (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc Lond B Sci 362:997–1008. doi:10.1098/rstb.2007.2029

    Article  Google Scholar 

  • Ke SQ, Lee CW (1996) Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via coleoptile tissue cultures. Plant Cell Rep 15:882–887

    Article  CAS  Google Scholar 

  • Khaleda L, Al-Forkan M (2006) Stimulatory effects of casein hydrolysates and proline in in vitro callus induction and plant regeneration from five deepwater rice (Oryza sativa L.). Biotechnology 5:379–384

    Article  CAS  Google Scholar 

  • Kohlenbach HW (1978) Comparative somatic embryogenesis. In: Thorpe TA (ed) Frontiers of plant tissue culture. University of Calgary Press, Calgary, pp 59–66

    Google Scholar 

  • Kuo YJ, Smith MAL (1993) Plant regeneration from St. Augustinegrass immature embryo-derived callus. Crop Sci 33:1394–1396

    Google Scholar 

  • Liu GS, Liu JS, Qi DM, Chu CC, Li HJ (2004) Factors affecting plant regeneration from tissue cultures of Chinese leymus (Leymus chinensis). Plant Cell Tiss Organ Cult 76:175–178

    Article  CAS  Google Scholar 

  • Lu CY, Chandler SF, Vasil IK (1984) Somatic embryogenesis and plant regeneration from cultured immature embryos of rye (Secale cereale L.). J Plant Physiol 15:237–244

    Google Scholar 

  • Luo JP, Jia JF (1998) Callus induction and plant regeneration from hypocotyl explants of the forage legume Astragalus adsurgens. Plant Cell Rep 17:567–570

    Article  CAS  Google Scholar 

  • Malabadi RB, Choudhury H, Tandon P (2004) Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and Gellan gum. Sci Hortic 102:449–459. doi:10.1016/j.scienta.2004.06.001

    Article  Google Scholar 

  • Morcillo F, Aberlenc-Bertossi F, Noirot M, Hamon S, Duval Y (1999) Differential effects of glutamine and arginine on 7S globulin accumulation during the maturation of oil palm somatic embryos. Plant Cell Rep 18:868–872

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nabors MW, Heyser JW, Dykes TA, DeMott KJ (1983) Long-duration, high-frequency plant regeneration from cereal tissue cultures. Planta 157:385–391

    Article  Google Scholar 

  • Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009) Somatic embryogenesis and plant regeneration in date palm Phœnix dactylifera L., cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tiss Organ Cult 97:71–79. doi:10.1007/s11240-009-9500-7

    Article  Google Scholar 

  • Ramakrishnan K, Gnanam R, Sivakumar P, Manickam A (2005) In vitro somatic embryogenesis from cell suspension cultures of cowpea [Vigna unguiculata (L.) Walp]. Plant Cell Rep 24:449–461. doi:10.1007/s00299-005-0965-5

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Das P (1994) Somatic embryogenesis and in vitro flowering of 3 species of bamboo. Plant Cell Rep 13:683–686

    Article  CAS  Google Scholar 

  • Sharma VK, Hänsch R, Mendel RR, Schulze J (2005) Mature embryo axis-based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.). J Exp Bot 56:1913–1922. doi:10.1093/jxb/eri186

    Article  CAS  PubMed  Google Scholar 

  • Sheeja TE, Mondal AB, Rathore RKS (2004) Efficient plantlet regeneration in tomato (Lycopersicon esculentum Mill.). Plant Tissue Cult 14:45–53

    Google Scholar 

  • Shinya I, Chiaki O, Takeo I, Yasuhiro S, Nobuaki S (2003) Effect of medium compositions on biosensing of benzene derivatives using recombinant Escherichia coli. Biochem Eng J 16:273–278

    Article  CAS  Google Scholar 

  • Shu QY, Liu GS, Xu SX, Li XF, Li HJ (2005) Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta. Plant Cell Rep 24:36–44. doi:10.1007/s00299-004-0908-6

    Article  CAS  PubMed  Google Scholar 

  • Skokut TA, Manchester J, Schaefer J (1985) Regeneration in alfalfa tissue culture: stimulation of somatic embryo production by amino acids and N-15 NMR determination of nitrogen utilization. Plant Physiol 79:579–583

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Newton RJ (2005) Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobes L.). Plant Cell Rep 24:1–9. doi:10.1007/s0029-005-0914-3

    Article  CAS  PubMed  Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang MB, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  • Torres KC (1989) Propagation of fern (Nephrolepis) through tissue culture. In: Torres KC (ed) Tissue culture techniques for horticultural crops. Van Nostrand Reinhold, New York, pp 106–110

    Google Scholar 

  • Toyama K, Bae CH, Kang JG, Lim YP, Adachi T, Riu KZ, Song PS, Lee HY (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cells 16:19–27

    CAS  PubMed  Google Scholar 

  • Wang LJ, Li XF, Chen SY, Liu GS (2009) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA 3 . Biotechnol Lett 31:313–319. doi:10.1007/s10529-008-9864-5

  • Wetherell DF, Dougall DK (1976) Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol Plant 37:97–103. doi:10.1111/j.1399-3054.1976.tb03939.x

    Article  CAS  Google Scholar 

  • Zhang WD, Liu GS, Liu J, Liu F, Qi DM, Li FF, Dong GJ, Zhao JJ (2002) A preliminary study on self-incompatibility of Leymus chinensis. Acta Bot Boreal Occident Sin 10:287–292

    Google Scholar 

  • Zuo JR, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Nutraceutical Bio Brain Korea 21 Project Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Kwan Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, YL., Hong, SK. Effects of plant growth regulators and l-glutamic acid on shoot organogenesis in the halophyte Leymus chinensis (Trin.). Plant Cell Tiss Organ Cult 100, 317–328 (2010). https://doi.org/10.1007/s11240-009-9653-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9653-4

Keywords

Navigation