Skip to main content
Log in

Shooting Control in Eucalyptus Grandis × E. urophylla Hybrid: Comparative Effects of 28-Homocastasterone and a 5α-Monofluoro Derivative

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

28-Homocastasterone (28-HCTS), a brassinosteroid, was used to treat in vitro-grown shoots of a hybrid between Eucalyptus grandis and E. urophylla. Treated shoots showed enhanced elongation and formation of new main shoots (the shoots originating directly from the initial explant) at low doses. Coincidently, there was reduced elongation and formation of primary lateral shoots (shoots originating from the main shoot). However, a 5α-monofluoro derivative of 28-HCTS (5F-HCTS) was unable to either stimulate elongation or formation of new main shoots, although it did stimulate elongation of primary lateral shoots. In conclusion, it is quite apparent that exogenously supplied brassinosteroids are able to change shooting patterns in Eucalyptus. These findings have practical biotechnological applications, for example on the improvement of micropropagation techniques for clonal propagation of woody angiosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5F-HCTS:

5fluoro-28-homocastasterone or (22R, 23R)-2α, 3α, 22, 23-tetrahydroxy-5α-fluorostigmastan- 6-one

28-HCTS:

28-homocastasterone or (22R, 23R)-2α, 3α, 22, 23-tetrahydroxy- 5α-fluorostigmastan-6-one

BRs:

brassinosteroids

MS:

Murashige and Skoog (1962)

References

  • Arteca RN, Tsai DS, Mandava NB (1991) The inhibition of brassinosteroid-induced ethylene biosynthesis in etiolated mung bean hypocotyl segments by 2,3,5-triiodobenzoic acid and 2-(p-chlorophenoxy)-2-methylpropionic acid. J Plant Physiol 139:52–56

    CAS  Google Scholar 

  • Back TG, Pharis RP (2003) Structure–activity studies of brassinosteroids and the search for novel analogues and mimetics with improved bioactivity. J Plant Growth Regul 22:350–361

    Article  PubMed  CAS  Google Scholar 

  • Brosa C (1999) Structure–activity relationship. In: Sakurai A, Yokota T, Clouse SD (eds), Brassinosteroids: steroidal plant hormones. Springer Verlag, Tokyo, pp 191–222

    Google Scholar 

  • Brosa C, Capdevila JM, Zamora I (1996) Brassinosteroids: a new way to define the structural requirements. Tetrahedron 52:2435–2448

    Article  CAS  Google Scholar 

  • Chon NM, Nishikawa-Koseki N, Hirata Y, Saka H, Abe H (2000) Effects of brassinolide on mesocotyl, coleoptile and leaf growth in rice seedlings. Plant Produc Sci 3:360–365

    Article  Google Scholar 

  • Clouse SD (1996) Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J 10:1–8

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    Article  PubMed  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Ann Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  Google Scholar 

  • Clouse SD, Zurek D (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds) Brassinosteroids: chemistry, bioactivity, and applications. American Chemical Society, Washington DC, pp 122–140

    Google Scholar 

  • Dunitz J, Taylor R (1997) Organic fluorine hardly ever accepts hydrogen bonds. Chem Euro J 3:89–98

    Article  CAS  Google Scholar 

  • Howard J, Hoy V, O’Hagan D, Smith G (1996) How good is fluorine as a hydrogen bond acceptor? Tetrahedron 38:12613–12622

    Article  Google Scholar 

  • Hu W, Ma H (2006) Characterization of a novel putative zinc finger gene MIF1: involvement in multiple hormonal regulation of Arabidopsis development. Plant J 45:399–422

    Article  PubMed  CAS  Google Scholar 

  • Jones TWA (1976) Biological activities of fluorogibberellins and interactions with unsubstituted gibberellins. Phytochemistry 15:1825–1827

    Article  CAS  Google Scholar 

  • Kauschmann A, Jessop A, Koncz C, Szekeres M, Willmitzer L, Altmann T (1996) Genetic evidence for an essential role of brassinosteroids in plant development. Plant J 9:701–713

    Article  CAS  Google Scholar 

  • Kirk KL, Cohen LA (1971) Photochemical decomposition of diazonium fluoroborates. Application to the synthesis of ring-fluorinated imidazoles. J Am Chem Soc 93:3060–3061

    Article  PubMed  CAS  Google Scholar 

  • Kohout L, Strnad M, Kaminek M (1991) Types of brassinosteroids and their bioassay. In: Culter HG, Yokota T, Adam G (eds) Brassinosteroids, chemistry, bioactivity, and applications. ACS Symposium Series 474. American Chemical Society, Washington DC, pp 56–73

  • McSteen P, Leyser O (2005) Shoot branching. Ann Rev Plant Biol 56:353–374

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mussig C (2005) Brassinosteroid-promoted growth. Plant Biol 7:110–117

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Mimura T, Hasezawa S (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol 137:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • O’Hagan D, Rzepa H (1997) Some influences of fluorine in bioorganic chemistry. Chem Commun 7:645–652

    Article  Google Scholar 

  • Penglis AAE (1981) Fluorinated carbohydrates. Adv Carbohydr Chem Biochem 38:195–285

    CAS  Google Scholar 

  • Pereira-Netto AB, Schaefer S, Galagovsky LR, Ramirez JA (2003) Brassinosteroid-driven modulation of stem elongation and apical dominance: applications in micropropagation. In: Hayat S, Ahmad A (eds), Brassinosteroids: bioactivity and crop productivity. Kluwer Academic Publishers, Dordrecht, pp 129–157

    Google Scholar 

  • Ramirez JA (2003) Sintesis de analogos de fitohormonas y evaluation de su bioactividad, Ph.D. Thesis (146–152), Departmento de Quimica Organica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

  • Ramírez JA, Gros E, Galagovsky L (2000) Effect on bioactivity due to C-5 heteroatom substituents on synthetic 28-Homobrassinosteroids analogs. Tetrahedron 56:6171–6181

    Article  Google Scholar 

  • Saito T, Kamiya Y, Uamane H, Murofushi N, Sakurai A, Takahashi N (1998) Effects of fluorogibberellins on plant growth and gibberellin 3β-hydroxylases. Plant Cell Physiol 39:574–580

    CAS  Google Scholar 

  • Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872

    Article  PubMed  CAS  Google Scholar 

  • Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H (2006) Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J 45:1028–1036

    Article  PubMed  CAS  Google Scholar 

  • Todoroki Y, Hirai N, Koshimizu K (1995) Synthesis and biological activity of 1′-deoxy-1′-fluoro- and 8′-fluoroabscissic acids. Phytochemistry 40:633–641

    Article  CAS  Google Scholar 

  • Wachsman MB, Ramirez JA, Galagovsky LR, Coto CE (2002) Antiviral activity of brassinosteroids derivatives against measles virus in cell cultures. Antivir Chem Chemother 13:61–66

    PubMed  CAS  Google Scholar 

  • Welch JT (1987) Advances in the preparation of biologically active organofluorine compounds. Tetrahedron 43:3123–3197

    Article  CAS  Google Scholar 

  • Yeang HY, Hillman JR (1984) Ethylene and apical dominance. Physiol Plant 60:275–282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq-Brasil for financial support and Dr. R.P. Pharis for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Pereira-Netto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira-Netto, A.B., Carvalho-Oliveira, M.M.C., Ramírez, J.A. et al. Shooting Control in Eucalyptus Grandis × E. urophylla Hybrid: Comparative Effects of 28-Homocastasterone and a 5α-Monofluoro Derivative. Plant Cell Tiss Organ Cult 86, 329–335 (2006). https://doi.org/10.1007/s11240-006-9124-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9124-0

Keywords

Navigation