Skip to main content
Log in

Metal ion chelation enhances tissue plasminogen activator (tPA)-induced thrombolysis: an in vitro and in vivo study

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Stroke is the third leading cause of death in the United States and the leading cause of adult disability. Despite enormous research efforts including many clinical trials, tissue plasminogen activator (tPA) remains the only FDA-approved treatment for acute ischemic stroke. Unfortunately, only 1–3% of stroke patients in the US receive this therapy because of the narrow time window and severe side effects for using tPA. The most deadly and damaging side effect is the risk of intracranial bleeding or hemorrhage. For that reason, the dose of tPA and its overall administration are under tight control, which may compromise the effect of thrombolysis. Studies have been focused on improving the effectiveness of tPA for higher rate of reperfusion, and the safety for less adverse bleeding episode. We studied how metal ions (zinc & iron) affect tPA-induced thrombolysis in vitro and in vivo, and proposed a method to improve the rate of thrombolysis. The amount of hemoglobin in the blood clot lysis was measured by a spectrophotometer. The tPA-induced thrombolysis was measured in vivo in femoral artery. Our results showed that Zn2+, Fe3+ and Fe2+ inhibited tPA-induced thrombolysis, with Zn2+ and Fe2+ being the most effective. Metal ion chelating agent EDTA when it was co-applied with tPA significantly enhanced the tPA-induced thrombolysis. The chelation alone did not have noticeable thrombolytic effect. In in vivo study of tPA-induced thrombosis following femoral artery thrombosis, the co-application of tPA and EDTA achieved significant higher rate of reperfusion than that by tPA treatment alone, suggesting that ion chelation facilitates tPA-induced thrombolysis and potentially improves the safety of tPA application by reducing the necessary dose of tPA application. Our results suggest that the co-application of a chelator and tPA improves the efficacy and, potentially, safety of tPA application, by reducing the necessary dose of tPA for thrombolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data available on request.

Code Availability

Not applicable.

References

  1. WHO. The top 10 causes of death. Geneva: World Health Organization, 2014.

  2. CDC. Stroke Facts. Atlanta: Centers for Disease Control and Prevention, 2015.

  3. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB (2015) American Heart Association Statistics C, Stroke Statistics S Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 131:29–322. https://doi.org/10.1161/CIR.0000000000000152

    Article  Google Scholar 

  4. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O’Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C (2014) Global burden of diseases I, risk factors S, the GBDSEG Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet 383:245–254

    Article  Google Scholar 

  5. Jauch EC, Saver JL, Adams HP Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H (2013) American Heart Association Stroke C, Council on Cardiovascular N, Council on Peripheral Vascular D, Council on Clinical C. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44:870–947. https://doi.org/10.1161/STR.0b013e318284056a

    Article  PubMed  Google Scholar 

  6. Powers WJ, Derdeyn CP, Biller J, Coffey CS, Hoh BL, Jauch EC, Johnston KC, Johnston SC, Khalessi AA, Kidwell CS, Meschia JF, Ovbiagele B, Yavagal DR, Stroke AHA (2015) American heart Association/American stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2015(46):3020–3035. https://doi.org/10.1161/STR.0000000000000074

    Article  CAS  Google Scholar 

  7. NINDS. Stroke Research Priorities National Institutes of Health (NIH), 2012.

  8. Fang MC, Cutler DM, Rosen AB (2010) Trends in thrombolytic use for ischemic stroke in the United States. J Hosp Med 5:406–409. https://doi.org/10.1002/jhm.689

    Article  PubMed  Google Scholar 

  9. NIH. NIH Report of the Stroke Progress Review Group In: NINDS, ed. Stroke Progress Review Group: NIH, 2012.

  10. Sena ES, Briscoe CL, Howells DW, Donnan GA, Sandercock PA, Macleod MR (2010) Factors affecting the apparent efficacy and safety of tissue plasminogen activator in thrombotic occlusion models of stroke: systematic review and meta-analysis. J Cereb Blood Flow Metab 30:1905–1913. https://doi.org/10.1038/jcbfm.2010.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li YV. Zinc Overload in Stroke. In: Li YV, Zhang JH, eds. Metal Ion in Stroke, 1st edn. New York Springer Science+Business Media, 2012, 167–89.

  12. Galaris D, Kitsati N, Pelidou S, Barbouti A. Implication of Oxidative Stress and “Labile Iron” in the Molecular Mechanisms of Ischemic Stroke. In: Li YV, Zhang JH, eds. Metal Ion in Stroke, 1st edn. New York Springer Science+Business Media, 2012, 255–71.

  13. Lin CM, Selim M. Iron Neurotoxicity in Ischemic and Hemorrhagic Stroke. In: Li YV, Zhang JH, eds. Metal Ion in Stroke, 1st edn. New York Springer Science+Business Media, 2012, 243–53.

  14. Rosenmund A, Haeberli A, Straub PW (1984) Blood coagulation and acute iron toxicity. Reversible iron-induced inactivation of serine proteases in vitro. J Lab Clin Med 103:524–533

    CAS  PubMed  Google Scholar 

  15. Punnonen BK, Irjala K, Rajama A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. 2015

  16. Hackley BM, Smith JC, Halsted JA (1968) A simplified method for plasma zinc determination by atomic absorption spectrophotometry. Clin Chem 14:1–5

    Article  CAS  Google Scholar 

  17. York N (1993) M NYIC. Packaging Zinc, Fibrinogen, and Factor Xlll in Plaitelet a-Granules 437442:1–6

    Google Scholar 

  18. Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    Article  CAS  Google Scholar 

  19. Chesters JK, Will M (1981) Zinc transport proteins in plasma. Br J Nutr 46:111–118

    Article  CAS  Google Scholar 

  20. Gordon PR, Woodruff CW, Anderson HL, O’Dell BL (1982) Effect of acute zinc deprivation on plasma zinc and platelet aggregation in adult males. Am J Clin Nutr 35:113–119

    Article  CAS  Google Scholar 

  21. Tubek S, Grzanka P, Tubek I (2008) Role of zinc in hemostasis: a review. Biol Trace Elem Res 121:1–8. https://doi.org/10.1007/s12011-007-8038-y

    Article  CAS  PubMed  Google Scholar 

  22. Vu TT, Fredenburgh JC, Weitz JI (2013) Zinc: an important cofactor in haemostasis and thrombosis. Thromb Haemost 109:421–430. https://doi.org/10.1160/TH12-07-0465

    Article  CAS  PubMed  Google Scholar 

  23. Fatah K, Hessel B (1998) Effect of zinc ions on fibrin network structure. Blood Coagul Fibrinolysis 9:629–635

    Article  CAS  Google Scholar 

  24. Henderson SJ, Stafford AR, Leslie BA, Kim PY, Vaezzadeh N, Ni R, Fredenburgh JC, Weitz JI (2015) Zinc delays clot lysis by attenuating plasminogen activation and plasmin-mediated fibrin degradation. Thromb Haemost 113:1278–1288. https://doi.org/10.1160/TH14-09-0771

    Article  PubMed  Google Scholar 

  25. Marx G (1988) Zinc binding to fibrinogen and fibrin. Arch Biochem Biophys 266:285–288

    Article  CAS  Google Scholar 

  26. Marx G, Hopmeier P, Gurfel D (1987) Zinc alters fibrin ultrastructure. Thromb Haemost 57:73–76

    Article  CAS  Google Scholar 

  27. Scully MF, Kakkar VV (1982) Structural features of fibrinogen associated with binding to chelated zinc. Biochim Biophys Acta 700:130–135

    Article  CAS  Google Scholar 

  28. Hutcheson RM, Engelmann MD, Cheng IF (2005) Voltammetric studies of Zn and Fe complexes of EDTA: evidence for the push mechanism. Biometals 18:43–51

    Article  CAS  Google Scholar 

  29. Marx G, Korner G, Mou X, Gorodetsky R (1993) Packaging zinc, fibrinogen, and factor XIII in platelet alpha-granules. J Cell Physiol 156:437–442. https://doi.org/10.1002/jcp.1041560302

    Article  CAS  PubMed  Google Scholar 

  30. Uesugi Y, Kawata H, Saito Y, Tabata Y (2012) Ultrasound-responsive thrombus treatment with zinc-stabilized gelatin nano-complexes of tissue-type plasminogen activator. J Drug Target 20:224–234. https://doi.org/10.3109/1061186X.2011.633259

    Article  CAS  PubMed  Google Scholar 

  31. Siddiq MM, Tsirka SE (2004) Modulation of zinc toxicity by tissue plasminogen activator. Mol Cell Neurosci 25:162–171. https://doi.org/10.1016/j.mcn.2003.10.007

    Article  CAS  PubMed  Google Scholar 

  32. Ishii K, Usui S, Sugimura Y, Yamamoto H, Yoshikawa K, Hirano K (2001) Inhibition of aminopeptidase N (AP-N) and urokinase-type plasminogen activator (uPA) by zinc suppresses the invasion activity in human urological cancer cells. Biol Pharm Bull 24:226–230

    Article  CAS  Google Scholar 

  33. Chavakis T, May AE, Preissner KT, Kanse SM (1999) Molecular mechanisms of zinc-dependent leukocyte adhesion involving the urokinase receptor and beta2-integrins. Blood 93:2976–2983

    Article  CAS  Google Scholar 

  34. Kowalska MA, Juliano D, Trybulec M, Lu W, Niewiarowski S (1994) Zinc ions potentiate adenosine diphosphate-induced platelet aggregation by activation of protein kinase C. J Lab Clin Med 123:102–109

    CAS  PubMed  Google Scholar 

  35. Trybulec M, Kowalska MA, McLane MA, Silver L, Lu W, Niewiarowski S (1993) Exposure of platelet fibrinogen receptors by zinc ions: role of protein kinase C. Proc Soc Exp Biol Med 203:108–116

    Article  CAS  Google Scholar 

  36. Hwang IY, Sun ES, An JH, Im H, Lee SH, Lee JY, Han PL, Koh JY, Kim YH (2011) Zinc-triggered induction of tissue plasminogen activator by brain-derived neurotrophic factor and metalloproteinases. J Neurochem 118:855–863. https://doi.org/10.1111/j.1471-4159.2011.07322.x

    Article  CAS  PubMed  Google Scholar 

  37. Ishikawa N, Shiraishi T, Kondo T, Taniguchi N (1981) Zinc deficiency states and carbonic anhydrase isozyme in experimental hemolytic and bleeding anemia of rabbits. Enzyme 26:85–92

    Article  CAS  Google Scholar 

  38. Scheplyagina LA (2005) Impact of the mother’s zinc deficiency on the woman’s and newborn’s health status. J Trace Elem Med Biol 19:29–35. https://doi.org/10.1016/j.jtemb.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  39. Stavrou E, Schmaier AH (2010) Factor XII: what does it contribute to our understanding of the physiology and pathophysiology of hemostasis & thrombosis. Thromb Res 125:210–215. https://doi.org/10.1016/j.thromres.2009.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mahdi F, Madar ZS, Figueroa CD, Schmaier AH (2002) Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 99:3585–3596

    Article  CAS  Google Scholar 

  41. Dugan TA, Yang VW, McQuillan DJ, Hook M (2006) Decorin modulates fibrin assembly and structure. J Biol Chem 281:38208–38216. https://doi.org/10.1074/jbc.M607244200

    Article  CAS  PubMed  Google Scholar 

  42. Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge England; New York

    Book  Google Scholar 

  43. Lipinski B, Pretorius E (2013) Iron-induced fibrin in cardiovascular disease. Curr Neurovasc Res 10:269–274

    Article  CAS  Google Scholar 

  44. Nielsen VG, Pretorius E (2014) Iron and carbon monoxide enhance coagulation and attenuate fibrinolysis by different mechanisms. Blood Coagul Fibrinolysis 25:695–702. https://doi.org/10.1097/MBC.0000000000000128

    Article  CAS  PubMed  Google Scholar 

  45. Lipinski B, Pretorius E, Oberholzer HM, Van Der Spuy WJ (2012) Iron enhances generation of fibrin fibers in human blood: implications for pathogenesis of stroke. Microsc Res Tech 75:1185–1190. https://doi.org/10.1002/jemt.22047

    Article  CAS  PubMed  Google Scholar 

  46. Pretorius E, Vermeulen N, Bester J, Lipinski B, Kell DB (2013) A novel method for assessing the role of iron and its functional chelation in fibrin fibril formation: the use of scanning electron microscopy. Toxicol Mech Methods 23:352–359. https://doi.org/10.3109/15376516.2012.762082

    Article  CAS  PubMed  Google Scholar 

  47. Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24:945–963. https://doi.org/10.1097/01.WCB.0000137868.50767.E8

    Article  CAS  PubMed  Google Scholar 

  48. Wang X, Asahi M, Lo EH (1999) Tissue type plasminogen activator amplifies hemoglobin-induced neurotoxicity in rat neuronal cultures. Neurosci Lett 274:79–82

    Article  CAS  Google Scholar 

  49. Burggraf D, Martens HK, Dichgans M, Hamann GF (2007) rt-PA causes a dose-dependent increase in the extravasation of cellular and non-cellular blood elements after focal cerebral ischemia. Brain Res 1164:55–62. https://doi.org/10.1016/j.brainres.2007.05.066

    Article  CAS  PubMed  Google Scholar 

  50. Stewart D, Kong M, Novokhatny V, Jesmok G, Marder VJ (2003) Distinct dose-dependent effects of plasmin and TPA on coagulation and hemorrhage. Blood 101:3002–3007. https://doi.org/10.1182/blood-2002-08-2546

    Article  PubMed  Google Scholar 

  51. Parcq J, Bertrand T, Montagne A, Baron AF, Macrez R, Billard JM, Briens A, Hommet Y, Wu J, Yepes M, Lijnen HR, Dutar P, Angles-Cano E, Vivien D (2012) Unveiling an exceptional zymogen: the single-chain form of tPA is a selective activator of NMDA receptor-dependent signaling and neurotoxicity. Cell Death Differ 19:1983–1991. https://doi.org/10.1038/cdd.2012.86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu D, Cheng T, Guo H, Fernandez JA, Griffin JH, Song X, Zlokovic BV (2004) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med 10:1379–1383. https://doi.org/10.1038/nm1122

    Article  CAS  PubMed  Google Scholar 

  53. Macrez R, Bezin L, Le Mauff B, Ali C, Vivien D (2010) Functional occurrence of the interaction of tissue plasminogen activator with the NR1 Subunit of N-methyl-D-aspartate receptors during stroke. Stroke 41:2950–2955. https://doi.org/10.1161/STROKEAHA.110.592360

    Article  CAS  PubMed  Google Scholar 

  54. Livesey JA, Manning RA, Meek JH, Jackson JE, Kulinskaya E, Laffan MA, Shovlin CL (2012) Low serum iron levels are associated with elevated plasma levels of coagulation factor VIII and pulmonary emboli/deep venous thromboses in replicate cohorts of patients with hereditary haemorrhagic telangiectasia. Thorax 67:328–333. https://doi.org/10.1136/thoraxjnl-2011-201076

    Article  PubMed  Google Scholar 

  55. Nielsen VG, Pretorius E (2014) Iron-enhanced coagulation is attenuated by chelation: thrombelastographic and ultrastructural analysis. Blood Coagul Fibrinolysis 25:845–850. https://doi.org/10.1097/MBC.0000000000000160

    Article  CAS  PubMed  Google Scholar 

  56. Pretorius E, Bester J, Vermeulen N, Lipinski B (2013) Oxidation inhibits iron-induced blood coagulation. Curr Drug Targets 14:13–19

    Article  CAS  Google Scholar 

  57. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462. https://doi.org/10.1038/nrn1671

    Article  CAS  Google Scholar 

  58. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791. https://doi.org/10.1038/nrn2734

    Article  CAS  Google Scholar 

  59. Shuttleworth CW, Weiss JH (2011) Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 32:480–486. https://doi.org/10.1016/j.tips.2011.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carbonell T, Rama R (2007) Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem 14:857–874

    Article  CAS  Google Scholar 

  61. Kim YH, Park JH, Hong SH, Koh JY (1999) Nonproteolytic neuroprotection by human recombinant tissue plasminogen activator. Science 284:647–650

    Article  CAS  Google Scholar 

  62. Lee J, Keep RF, Hua Y, Pandey A, Xi G (2012) The Role of Iron in Brain Following Subarachnoid Hemorrhage. In: Zhang JH (ed) Li YV. Metal Ion in Stroke, Springer, New York, pp 273–282

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

XY and ZW researched data, contributed to the study design and discussion. XY performed statistical analyses and drafted the manuscript. YL conceived and coordinated the study. YL contributed to the study concept and design and writing of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yang V. Li.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Wang, Z. & Li, Y.V. Metal ion chelation enhances tissue plasminogen activator (tPA)-induced thrombolysis: an in vitro and in vivo study. J Thromb Thrombolysis 53, 291–301 (2022). https://doi.org/10.1007/s11239-021-02600-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02600-6

Keywords

Navigation