Skip to main content

Advertisement

Log in

Platelet microvesicles are associated with the severity of coronary artery disease: comparison between peripheral and coronary circulation

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Microvesicles (MVs) have recently emerged as markers of thrombosis. Furthermore, there is an unexplained residual thrombotic risk is observed in patients with acute coronary syndrome (ACS) and/or stable coronary artery disease (CAD), despite treatment. We measured platelet (PMVs) and erythrocyte (ErMVs) in patients with ACS and stable CAD, both in the peripheral and coronary circulation. We studied consecutive eligible patients during a coronary angiography. Blood samples were collected from the stem of the left coronary artery and femoral artery. PMVs were significantly increased in CAD patients compared to controls. ACS patients had also increased PMVs in coronary and peripheral circulation, compared to controls. Furthermore, ACS patients exhibited increased PMVs in coronary compared to peripheral circulation. Lastly, coronary PMVs were associated with the severity of CAD based on the SYNTAX score. No significant differences were observed in the levels of ErMVs among groups. Therefore, PMVs emerge as novel markers of thrombosis in CAD, further augmenting the vicious cycle of inflammation and thrombosis during ACS. Importantly, coronary PMVs may reflect the severity of CAD in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, Boilard E, Buzas EI, Caporali A, Dignat-George F, Evans PC, Lacroix R, Lutgens E, Ketelhuth DFJ, Nieuwland R, Toti F, Tunon J, Weber C, Hoefer IE (2017) Microvesicles in vascular homeostasis and diseases. Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. Thromb Haemost 117(7):1296–1316. https://doi.org/10.1160/TH16-12-0943

    Article  PubMed  Google Scholar 

  2. Gkaliagkousi E, Gavriilaki E, Vasileiadis I, Nikolaidou B, Yiannaki E, Lazaridis A, Triantafyllou A, Anyfanti P, Markala D, Zarifis I, Douma S (2019) Endothelial Microvesicles Circulating in Peripheral and Coronary Circulation Are Associated With Central Blood Pressure in Coronary Artery Disease. Am J Hypertens 32(12):1199–1205. https://doi.org/10.1093/ajh/hpz116

    Article  CAS  PubMed  Google Scholar 

  3. Dignat-George F, Boulanger CM (2011) The many faces of endothelial microparticles. Arterioscler Thromb Vasc Biol 31(1):27–33. https://doi.org/10.1161/ATVBAHA.110.218123

    Article  CAS  PubMed  Google Scholar 

  4. Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, Zografou I, Markala D, Douma S (2019) Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diab Vasc Dis Res. https://doi.org/10.1177/1479164119844691

    Article  PubMed  Google Scholar 

  5. van der Zee PM, Biro E, Ko Y, de Winter RJ, Hack CE, Sturk A, Nieuwland R (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 52(4):657–664. https://doi.org/10.1373/clinchem.2005.057414

    Article  CAS  PubMed  Google Scholar 

  6. Biasucci LM, Porto I, Di Vito L, De Maria GL, Leone AM, Tinelli G, Tritarelli A, Di Rocco G, Snider F, Capogrossi MC, Crea F (2012) Differences in microparticle release in patients with acute coronary syndrome and stable angina. Circ J 76(9):2174–2182

    Article  CAS  Google Scholar 

  7. Stepien E, Stankiewicz E, Zalewski J, Godlewski J, Zmudka K, Wybranska I (2012) Number of microparticles generated during acute myocardial infarction and stable angina correlates with platelet activation. Arch Med Res 43(1):31–35. https://doi.org/10.1016/j.arcmed.2012.01.006

    Article  PubMed  Google Scholar 

  8. Cui Y, Zheng L, Jiang M, Jia R, Zhang X, Quan Q, Du G, Shen D, Zhao X, Sun W, Xu H, Huang L (2013) Circulating microparticles in patients with coronary heart disease and its correlation with interleukin-6 and C-reactive protein. Mol Biol Rep 40(11):6437–6442. https://doi.org/10.1007/s11033-013-2758-1

    Article  CAS  PubMed  Google Scholar 

  9. Mavroudis CA, Eleftheriou D, Hong Y, Majumder B, Koganti S, Sapsford R, North J, Lowdell M, Klein N, Brogan P, Rakhit RD (2017) Microparticles in acute coronary syndrome. Thromb Res 156:109–116. https://doi.org/10.1016/j.thromres.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  10. Zacharia E, Antonopoulos AS, Oikonomou E, Papageorgiou N, Pallantza Z, Miliou A, Mystakidi VC, Simantiris S, Kriebardis A, Orologas N, Valasiadi E, Papaioannou S, Galiatsatos N, Antoniades C, Tousoulis D (2020) Plasma signature of apoptotic microvesicles is associated with endothelial dysfunction and plaque rupture in acute coronary syndromes. J Mol Cell Cardiol 138:110–114. https://doi.org/10.1016/j.yjmcc.2019.11.153

    Article  CAS  PubMed  Google Scholar 

  11. Min PK, Kim JY, Chung KH, Lee BK, Cho M, Lee DL, Hong SY, Choi EY, Yoon YW, Hong BK, Rim SJ, Kwon HM (2013) Local increase in microparticles from the aspirate of culprit coronary arteries in patients with ST-segment elevation myocardial infarction. Atherosclerosis 227(2):323–328. https://doi.org/10.1016/j.atherosclerosis.2013.01.032

    Article  CAS  PubMed  Google Scholar 

  12. Katopodis JN, Kolodny L, Jy W, Horstman LL, De Marchena EJ, Tao JG, Haynes DH, Ahn YS (1997) Platelet microparticles and calcium homeostasis in acute coronary ischemias. Am J Hematol 54(2):95–101

    Article  CAS  Google Scholar 

  13. Giannopoulos G, Oudatzis G, Paterakis G, Synetos A, Tampaki E, Bouras G, Hahalis G, Alexopoulos D, Tousoulis D, Cleman MW, Stefanadis C, Deftereos S (2014) Red blood cell and platelet microparticles in myocardial infarction patients treated with primary angioplasty. Int J Cardiol 176(1):145–150. https://doi.org/10.1016/j.ijcard.2014.07.022

    Article  PubMed  Google Scholar 

  14. Shantsila E, Montoro-Garcia S, Gallego P, Lip GY (2014) Circulating microparticles: challenges and perspectives of flow cytometric assessment. Thromb Haemost 111(6):1009–1014. https://doi.org/10.1160/TH13-11-0937

    Article  CAS  PubMed  Google Scholar 

  15. Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, Zografou I, Markala D, Douma S (2019) Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diabetes & Vascular Disease Research 16(5):458–465. https://doi.org/10.1177/1479164119844691

    Article  CAS  Google Scholar 

  16. Inoue T, Hikichi Y, Morooka T, Yoshida K, Fujimatsu D, Komoda H, Kameda M, Nonaka M, Sohma R, Hashimoto S, Node K (2006) Comparison of changes in circulating platelet-derived microparticles and platelet surface P-selectin expression after coronary stent implantation. Platelets 17(6):416–420. https://doi.org/10.1080/09537100600757885

    Article  CAS  PubMed  Google Scholar 

  17. Craft JA, Marsh NA (2003) Increased generation of platelet-derived microparticles following percutaneous transluminal coronary angioplasty. Blood Coag Fibrinol 14(8):719–728. https://doi.org/10.1097/01.mbc.0000061351.72909.ad

    Article  Google Scholar 

  18. Craft JA, Masci PP, Roberts MS, Brighton TA, Garrahy P, Cox S, Marsh NA (2004) Increased platelet-derived microparticles in the coronary circulation of percutaneous transluminal coronary angioplasty patients. Blood Coagulation & Fibrinolysis : An International Journal in Haemostasis and Thrombosis 15(6):475–482

    Article  Google Scholar 

  19. Porto I, Biasucci LM, De Maria GL, Leone AM, Niccoli G, Burzotta F, Trani C, Tritarelli A, Vergallo R, Liuzzo G, Crea F (2012) Intracoronary microparticles and microvascular obstruction in patients with ST elevation myocardial infarction undergoing primary percutaneous intervention. Eur Heart J 33(23):2928–2938. https://doi.org/10.1093/eurheartj/ehs065

    Article  PubMed  Google Scholar 

  20. Inoue T, Komoda H, Kotooka N, Morooka T, Fujimatsu D, Hikichi Y, Soma R, Uchida T, Node K (2008) Increased circulating platelet-derived microparticles are associated with stent-induced vascular inflammation. Atherosclerosis 196(1):469–476. https://doi.org/10.1016/j.atherosclerosis.2006.12.004

    Article  CAS  PubMed  Google Scholar 

  21. Gkaliagkousi E, Passacquale G, Douma S, Zamboulis C, Ferro A (2010) Platelet activation in essential hypertension: implications for antiplatelet treatment. Am J Hypertens 23(3):229–236. https://doi.org/10.1038/ajh.2009.247

    Article  CAS  PubMed  Google Scholar 

  22. Tan KT, Lip GY (2005) The potential role of platelet microparticles in atherosclerosis. Thromb Haemost 94(3):488–492. https://doi.org/10.1160/TH05-03-0201

    Article  CAS  PubMed  Google Scholar 

  23. Gkaliagkousi E, Gavriilaki E, Douma S (2015) Antiplatelet treatment in essential hypertension: where do we stand? Curr Hypertens Rep 17(4):536. https://doi.org/10.1007/s11906-015-0536-2

    Article  CAS  PubMed  Google Scholar 

  24. Skeppholm M, Mobarrez F, Malmqvist K, Wallen H (2012) Platelet-derived microparticles during and after acute coronary syndrome. Thromb Haemost 107(6):1122–1129. https://doi.org/10.1160/TH11-11-0779

    Article  CAS  PubMed  Google Scholar 

  25. Chyrchel B, Drozdz A, Dlugosz D, Stepien EL, Surdacki A (2019) Platelet Reactivity And Circulating Platelet-Derived Microvesicles Are Differently Affected By P2Y12 Receptor Antagonists. Int J Med Sci 16(2):264–275. https://doi.org/10.7150/ijms.28580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Capodanno D, Di Salvo ME, Cincotta G, Miano M, Tamburino C (2009) Usefulness of the SYNTAX score for predicting clinical outcome after percutaneous coronary intervention of unprotected left main coronary artery disease. Circulation Cardiovascular Interventions 2(4):302–308. https://doi.org/10.1161/CIRCINTERVENTIONS.108.847137

    Article  PubMed  Google Scholar 

  27. Farooq V, Head SJ, Kappetein AP, Serruys PW (2014) Widening clinical applications of the SYNTAX Score. Heart 100(4):276–287. https://doi.org/10.1136/heartjnl-2013-304273

    Article  PubMed  Google Scholar 

  28. Bundhun PK, Sookharee Y, Bholee A, Huang F (2017) Application of the SYNTAX score in interventional cardiology: A systematic review and meta-analysis. Medicine 96(28):e7410. https://doi.org/10.1097/MD.0000000000007410

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EG designed the study, actively participated in subjects’ enrollment and manuscript preparation. ElG and SG analyzed and interpreted the data and participated in manuscript preparations. IV, BN, AY and AL actively participated in subject’s enrollment and measurements. PA and AT participated in study design and preparation of tables and figures. IZ and SD participated in study design and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to E. Gkaliagkousi.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gkaliagkousi, E., Gavriilaki, E., Yiannaki, E. et al. Platelet microvesicles are associated with the severity of coronary artery disease: comparison between peripheral and coronary circulation. J Thromb Thrombolysis 51, 1138–1143 (2021). https://doi.org/10.1007/s11239-020-02302-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-020-02302-5

Keywords

Navigation