Skip to main content
Log in

Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

This study investigated the impact of either type 2 diabetes or obesity, separately or in combination, on the absolute amounts of microparticles (MP) and the pathways by which these are associated with either condition. The concentrations of circulating MP derived from platelets (PMP), leukocytes (LMP) and monocytes (MMP), together with their specific activation markers, were compared in 30 subjects who were characterised across 4 cohorts as obese or type 2 diabetes. The subjects with type 2 diabetes had elevated concentrations of total PMP (P = 0.003), and PMP that were fibrinogen-positive (P = 0.04), tissue factor-positive (P < 0.001), P-selectin-positive (P = 0.03). Type 2 diabetes did not alter either total or activated LMP or MMP. Obesity per se did not impact on any MP measurement. Elevated concentrations of plasma PMP occurred in subjects with type 2 diabetes, whether they were obese or non-obese. In contrast, obesity in the absence of type 2 diabetes had no effect. The increased concentrations of specific marker-positive PMP in the subjects with diabetes might reflect potential pathways by which PMP may contribute to the pathogenesis of atherosclerosis and type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garcia Rodriguez P, Eikenboom HC, Tesselaar ME, Huisman MV et al. (2010) Plasma levels of microparticle-associated tissue factor activity in patients with clinically suspected pulmonary embolism. Thromb Res 126:345–349

    Article  CAS  PubMed  Google Scholar 

  2. Shet AS, Key NS, Hebbel RP (2004) Measuring circulating cell-derived microparticles. J Thromb Haemost 2:1848–1850

    Article  Google Scholar 

  3. Shah MD, Bergeron AL, Dong JF, Lopez JA (2008) Flow cytometric measurement of microparticles: pitfalls and protocol modifications. Platelets 19:365–372

    Article  CAS  PubMed  Google Scholar 

  4. Faure V, Dou L, Sabatier F, Cerini C et al. (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J Thromb Haemost 4:566–573

    Article  CAS  PubMed  Google Scholar 

  5. Morel O, Morel N, Freyssinet JM, Toti F (2008) Platelet microparticles and vascular cells interactions: a checkpoint between the haemostatic and thrombotic responses. Platelets 19:9–23

    Article  CAS  PubMed  Google Scholar 

  6. Mobarrez F, Antovic J, Egberg N, Hansson M et al. (2010) A multicolor flow cytometric assay for measurement of platelet-derived microparticles. Thromb Res 125:e110–e116

    Article  CAS  PubMed  Google Scholar 

  7. Morel O, Ohlmann P, Morel N, Jesel L et al. (2005) Microparticles and cardiovascular disease. Arch Mal Coeur Vaiss 98:226–235

    CAS  PubMed  Google Scholar 

  8. Amabile N, Guerin AP, Leroyer A, Mallat Z et al. (2005) Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. J Am Soc Nephrol 16:3381–3388

    Article  CAS  PubMed  Google Scholar 

  9. Koga H, Sugiyama S, Kugiyama K, Fukushima H et al. (2006) Elevated levels of remnant lipoproteins are associated with plasma platelet microparticles in patients with type-2 diabetes mellitus without obstructive coronary artery disease. Eur Heart J 27:817–823

    Article  CAS  PubMed  Google Scholar 

  10. Tan KT, Tayebjee MH, Lim HS, Lip GY (2005) Clinically apparent atherosclerotic disease in diabetes is associated with an increase in platelet microparticle levels. Diabet Med 22:1657–1662

    Article  CAS  PubMed  Google Scholar 

  11. Tan KT, Tayebjee MH, Macfadyen RJ, Lip GY, Blann AD (2005) Elevated platelet microparticles in stable coronary artery disease are unrelated to disease severity or to indices of inflammation. Platelets 16:368–371

    Article  CAS  PubMed  Google Scholar 

  12. Jy W, Minagar A, Jimenez JJ, Sheremata WA et al. (2004) Endothelial microparticles (EMP) bind and activate monocytes: elevated EMP-monocyte conjugates in multiple sclerosis. Front Biosci 9:3137–3144

    Article  CAS  PubMed  Google Scholar 

  13. Sabatier F, Darmon P, Hugel B, Combes V et al. (2002) Type 1 and type 2 diabetic patients display different patterns of cellular microparticles. Diabetes 51:2840–2845

    Article  CAS  PubMed  Google Scholar 

  14. Toth B, Liebhardt S, Steinig K, Ditsch N et al. (2008) Platelet-derived microparticles and coagulation activation in breast cancer patients. Thromb Haemost 100:663–669

    CAS  PubMed  Google Scholar 

  15. Boulanger CM, Amabile N, Tedgui A (2006) Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. Hypertension 48:180–186

    Article  CAS  PubMed  Google Scholar 

  16. Shantsila E (2009) Endothelial microparticles: a universal marker of vascular health? J Hum Hypertens 23:359–361

    Article  CAS  PubMed  Google Scholar 

  17. Jung KH, Chu K, Lee ST, Park HK et al. (2009) Circulating endothelial microparticles as a marker of cerebrovascular disease. Ann Neurol 66:191–199

    Article  CAS  PubMed  Google Scholar 

  18. Cohen Z, Gonzales RF, Davis-Gorman GF, Copeland JG, McDonagh PF (2002) Thrombin activity and platelet microparticle formation are increased in type 2 diabetic platelets: a potential correlation with caspase activation. Thromb Res 107:217–221

    Article  CAS  PubMed  Google Scholar 

  19. Kumanyika S, Jeffery RW, Morabia A, Ritenbaugh C et al. (2002) Obesity prevention: the case for action. Int J Obes Relat Metab Disord 26:425–436

    Article  CAS  PubMed  Google Scholar 

  20. Eckel RH, Krauss RM (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee.Circulation 97:2099–2100

    Article  CAS  Google Scholar 

  21. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report (1998) National Institutes of Health. Obes Res 6(Suppl 2):51S–209S

    Google Scholar 

  22. Gregor MF, Hotamisligil GS (2011) Inflammatory mechanisms in obesity. Annu Rev Immunol 29:415–445

    Article  CAS  PubMed  Google Scholar 

  23. Goichot B, Grunebaum L, Desprez D, Vinzio S et al. (2006) Circulating procoagulant microparticles in obesity. Diabetes Metab 32:82–85

    Article  CAS  PubMed  Google Scholar 

  24. Ramacciotti E, Blackburn S, Hawley AE, Vandy F et al. (2011) Evaluation of soluble P-selectin as a marker for the diagnosis of deep venous thrombosis. Clin Appl Thromb Hemost 17:425–431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94:3791–3799

    CAS  PubMed  Google Scholar 

  26. Ashcroft, B.A., de Sonneville, J., Yuana, Y., Osanto, S., et al. (2012) Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed Microdevices 14(4):641–649

    Google Scholar 

  27. Wildman RP (2009) Healthy obesity. Curr Opin Clin Nutr Metab Care 12:438–443

    Article  PubMed  Google Scholar 

  28. Beck Nielsen H, Hother Nielsen O (2004) In: LeRoith D, Taylor SI, Olefsky JM (eds) Obesity in type 2 diabetes mellitus-diabetes mellitus: a fundamental and clinical text. Lippincott Williams & Wilkins, Philadelphia, pp 857–868

  29. Murakami T, Horigome H, Tanaka K, Nakata Y et al. (2007) Impact of weight reduction on production of platelet-derived microparticles and fibrinolytic parameters in obesity. Thromb Res 119:45–53

    Article  CAS  PubMed  Google Scholar 

  30. Gawaz M, Langer H, May AE (2005) Platelets in inflammation and atherogenesis. J Clin Invest 115:3378–3384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Stec JJ, Silbershatz H, Tofler GH, Matheney TH et al. (2000) Association of fibrinogen with cardiovascular risk factors and cardiovascular disease in the Framingham Offspring Population. Circulation 102:1634–1638

    Article  CAS  PubMed  Google Scholar 

  32. Nieuwland R, Sturk A (2007) In: Michelson AD (ed) Platelet-derived microparticles-platelets. Academic Press, London, p 403

  33. Key NS (2010) Analysis of tissue factor positive microparticles. Thromb Res 125(Suppl 1):S42–S45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Diamant M, Nieuwland R, Pablo RF, Sturk A et al. (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106:2442–2447

    Article  CAS  PubMed  Google Scholar 

  35. Mann KG (2003) Thrombin formation. Chest 124:4S–10S

    Article  CAS  PubMed  Google Scholar 

  36. Morrissey JH (2004) Tissue factor: a key molecule in hemostatic and nonhemostatic systems. Int J Hematol 79:103–108

    Article  CAS  PubMed  Google Scholar 

  37. VanWijk MJ, VanBavel E, Sturk A, Nieuwland R (2003) Microparticles in cardiovascular diseases. Cardiovasc Res 59:277–287

    Article  CAS  PubMed  Google Scholar 

  38. Evangelista V, Manarini S, Sideri R, Rotondo S et al. (1999) Platelet/polymorphonuclear leukocyte interaction: p-selectin triggers protein-tyrosine phosphorylation-dependent CD11b/CD18 adhesion: role of PSGL-1 as a signaling molecule. Blood 93:876–885

    CAS  PubMed  Google Scholar 

  39. Blann AD, Nadar SK, Lip GY (2003) The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J 24:2166–2179

    Article  CAS  PubMed  Google Scholar 

  40. van der Zee PM, Biro E, Ko Y, de Winter RJ et al. (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction. Clin Chem 52:657–664

    Article  PubMed  Google Scholar 

  41. Lok CA, Nieuwland R, Sturk A, Hau CM et al. (2007) Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets 18:68–72

    Article  CAS  PubMed  Google Scholar 

  42. Madonna R, De Caterina R (2011) Cellular and molecular mechanisms of vascular injury in diabetes—part I: pathways of vascular disease in diabetes. Vascul Pharmacol 54:68–74

    Article  CAS  PubMed  Google Scholar 

  43. Johnstone AM, Lobley GE, Horgan GW, Bremner DM et al. (2011) Effects of a high-protein, low-carbohydrate v. high-protein, moderate-carbohydrate weight-loss diet on antioxidant status, endothelial markers and plasma indices of the cardiometabolic profile. Br J Nutr 106(2):1–10

    Article  Google Scholar 

  44. Arteaga RB, Chirinos JA, Soriano AO, Jy W et al. (2006) Endothelial microparticles and platelet and leukocyte activation in patients with the metabolic syndrome. Am J Cardiol 98:70–74

    Article  CAS  PubMed  Google Scholar 

  45. Langer HF, Chavakis T (2009) Leukocyte-endothelial interactions in inflammation. J Cell 13:1211–1220

    CAS  Google Scholar 

  46. Chironi G, Simon A, Hugel B, Del Pino M et al. (2006) Circulating leukocyte-derived microparticles predict subclinical atherosclerosis burden in asymptomatic subjects. Arterioscler Thromb Vasc Biol 26:2775–2780

    Article  CAS  PubMed  Google Scholar 

  47. Mallat Z, Benamer H, Hugel B, Benessiano J et al. (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes. Circulation 101:841–843

    Article  CAS  PubMed  Google Scholar 

  48. Omoto S, Nomura S, Shouzu A, Nishikawa M et al. (2002) Detection of monocyte-derived microparticles in patients with type II diabetes mellitus. Diabetologia 45:550–555

    Article  CAS  PubMed  Google Scholar 

  49. Patil R, Ghosh K, Shetty S (2013) Profibrinolytic microparticles are not adequately produced to compensate their prothrombotic effect. Haematologica 98:e69

    Article  PubMed Central  PubMed  Google Scholar 

  50. Lacroix R, Plawinski L, Robert S, Doeuvre L et al. (2012) Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 97:1864–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly funded by a Grant awarded by the Chief Scientists Office of the Scottish Government to the University of the Highlands and Islands, Rowett Institute of Nutrition & Health at the University of Aberdeen and Aberdeen Royal Infirmary to examine the impact of diets rich in oats for lifestyle control of type 2 diabetes. Additional support was contributed by the Rural & Environment Science & Analytical Services (RESAS) of the Scottish Government to Rowett Institute of Nutrition & Health (RINH). Costs of microparticle analyses were borne by Provexis Plc.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niamh O’Kennedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., McGeoch, S.C., Johnstone, A.M. et al. Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J Thromb Thrombolysis 37, 455–463 (2014). https://doi.org/10.1007/s11239-013-1000-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-013-1000-2

Keywords

Navigation