Skip to main content
Log in

Decomposition of interaction indices: alternative interpretations of cardinal–probabilistic interaction indices

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

In cooperative game theory, the concept of interaction index is an extension of the concept of one-point solution that takes into account interactions among players. In this paper, we focus on cardinal–probabilistic interaction indices that generalize the class of semivalues. We provide two types of decompositions. With the first one, a cardinal–probabilistic interaction index for a given coalition equals the difference between its external interaction index and a weighted sum of the individual impact of the remaining players on the interaction index of the considered coalition. The second decomposition, based on the notion of the "decomposer", splits an interaction index into a direct part, the decomposer, which measures the interaction in the coalition considered, and an indirect part, which indicates how all remaining players individually affect the interaction of the coalition considered. We propose alternative characterizations of the cardinal–probabilistic interaction indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

We do not analyse or generate any datasets, because our work proceeds within a theoretical and mathematical approach.

Notes

  1. In the context of inequality game theory (cooperative game theory applied to inequality theory), Chantreuil et al. (2019) and Tido Takeng et al. (2022) used the same approach to motivate the existence of interactions among the income inequalities.

  2. Cardinal–probabilistic interaction indices are derived from the class of probabilistic interaction indices by additionally imposing the symmetry axiom to this class.

  3. To avoid heavy notation, we adopt the following conventions: we will omit braces for singletons, e.g., by writing v(i), \(S\backslash i\) instead of \(v(\{i\})\), \(S\backslash \{i\}\). Similarly, for pairs, we will write ij instead of \(\{i,j\}\).

  4. Note that \(\Delta _{S}v(\emptyset )=\lambda _v(S)\) and \(\Delta _{S}v(N\backslash S)=\displaystyle \sum _{T\supseteq S }\lambda _v(T)= \displaystyle \sum _{L\subseteq S}(-1)^{l}v(N\backslash L)\) (see Fujimoto et al. (2006)).

  5. One can notice that when \(S=i\), according to Proposition 1, every semivalue is AID, especially the Shapley solution (Chantreuil et al., 2019).

  6. Positivity: A solution \(\Psi\) satisfies the Positivity property if for all monotonic game \(v\in TU(N)\) and \(i\in N\), it holds that \(\Psi (v,i)\ge 0.\)

  7. When \(S=i\), we obtain Theorem 3 of Casajus and Huettner (2018), page 39.

References

  • Banzhaf, J. (1965). Weighted voting does not work: a mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Casajus, A. (2020). Second-order productivity, second-order payoffs, and the Shapley value. In HHL Working Paper No. 187, HHL Leipzig Graduate School of Management, Leipzig, Germany.

  • Casajus, A., & Huettner, F. (2018). Decomposition of solutions and the Shapley value. Games Economic Behavior, 108, 37–48.

    Article  Google Scholar 

  • Chantreuil, F., Courtin, S., Fourrey, K., & Lebon, I. (2019). A note on the decomposability of inequality measures. Social Choice and Welfare, 54, 1–16.

    Google Scholar 

  • Courtin, S., Tido Takeng, R., & Chantreuil, F. (2020). Decomposition of interaction indices: alternative interpretations of cardinal-probabilistic interaction indices. Working paper. https://hal.archives-ouvertes.fr/hal-02952516.

  • Dubey, P., Neyman, A. J., & Weber, J. R. (1981). Value theory without efficiency. Mathematics of Operations Research, 6, 122–128.

    Article  Google Scholar 

  • Fujimoto, K., Kojadinovic, I., & Marichal, J.-L. (2006). Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices. Games and Economic Behavior, 55, 72–99.

    Article  Google Scholar 

  • Grabisch, M. (1997). Alternative representations of discrete fuzzy measures for decision making. International Journal of Uncertainty Fuzziness Knowledge-Based System, 5, 587–607.

    Article  Google Scholar 

  • Grabisch, M., Roubens, M. (1997). An axiomatic approach of interaction in multicriteria decision making. Proc. 5th European Congr. on Intelligent Techniques and Soft Computing. EUFIT97. ELITE Foundation, Aachen, Germany, pages 81–85.

  • Grabisch, M., & Roubens, M. (1999). An axiomatic approach to the concept of interaction among players in cooperative games. International Journal of Game Theory, 28, 547–565.

    Article  Google Scholar 

  • Grabisch, M., Roubens, M. (1999b). Probabilistic interactions among players of a cooperative game. In Beliefs, Interactions and Preferences in Decision Making. Mons, Belguim, 1997.In Theory Decis. Libr. Ser. B, vol. 40, pages 205–216. Kluwer Academic, Dordrech.

  • Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In Luce R. D. Tucker, A. W., editor, Contribution to the Theory of Games IV Vol. 2, pages 325–355. Princeton University Press, Princeton,NJ.

  • Kojadinovic, I. (2005). An axiomatic approach to the measurement of the amount of interaction among criteria or players. Fuzzy Sets and Systems, 152, 417–435.

    Article  Google Scholar 

  • Marichal, J. L., Roubens, M. (1999). The chaining interaction index among players in cooperative games. In Meskens N. Roubens M., editor, Advances in Decision Analysis. Mathematical Modelling: Theory and Applications Vol 4. Springer, Dordrech.

  • Meessen, R. (1988). Communication games. Master Thesis. University of Niejmegen. The Netherlands (in Dutch).

  • Myerson, R. G. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2, 225–229.

    Article  Google Scholar 

  • Owen, G. (1972). Multilinear extension of games. Management Science, 18, 64–79.

    Article  Google Scholar 

  • Peleg, Bezalel, Sudhölter, Peter. (2007). Introduction to the theory of cooperative games. Theory and Decision Library C, Vol. 34. Springer, 2 edition.

  • Radzik, T., & Driessen, T. (2013). On a family of values for tu-games generalizing the shapley value. Mathematical Social Sciences, 65, 105–111.

    Article  Google Scholar 

  • Roubens, M. (1996). Interaction between criteria and definition of weights in mcda problems. In 44th Meeting of the European Working Group ’Multicriteria Aid for Decisions’, Brussels, Belgium.

  • Shapley, L. S. (1953). A value for n-person games. Annals of Mathematics Studies 28In H. W. Kuhn & A. W. Tucker (Eds.), Contribution to the theory of games (Vol. II, pp. 307–317). Princeton: Princeton University Press.

    Google Scholar 

  • Tido Takeng, R., Soh Voutsa, A. C., & Fourrey, K. (2022). Decompositions of inequality measures from the perspective of the Shapley-Owen value. Theory and Decision.

Download references

Acknowledgements

The authors would like to thank the associate editor, anonymous referees, André Casajus, Frank Huettner, Bertrand Tchantcho, Jean Lainé and Remzi Sanver for helpful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigue Tido Takeng .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs and complementary results

Appendix: Proofs and complementary results

For any coalition \(S\in 2^N\backslash \emptyset\), the \(S-\)derivative of a TU game can be represented by the dividends of coalitions they belong to, as shown in the following result.

Proposition 9

Given two games \(v,w \in TU(N)\) and \(S\in 2^N\backslash \emptyset\), the following two statements imply each other.

  1. (i)

    For all \(T\subseteq N\backslash S\), we have

    $$\begin{aligned} \Delta _{S}v(T)=\Delta _{S}w(T). \end{aligned}$$
  2. (ii)

    For all \(T\subseteq N\backslash S\), we have

    $$\begin{aligned} \lambda _v(S\cup T)=\lambda _w(S\cup T). \end{aligned}$$

Proof

In view of (Casajus, 2020, Appendix A) and using the induction method on the cardinally of S, we have the result. \(\square\)

The next proposition gives a necessary and sufficient condition under which an AID interaction index is a cardinal–probabilistic interaction index.

Proposition 10

Let \(\Psi\) be an AID interaction index with the associated family of real numbers \(\{f^{s}_{n}(t)\}_{t=0,..., n-s-1}\). For any non-empty coalition \(S\subseteq N\), we have

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{T\subseteq N\backslash S}P^s_n(t)\Delta _{S} v(T), \end{aligned}$$

where

$$\begin{aligned} P^s_n(t)= & {} \big [(n-s-t)f^{s}_{n}(t)-tf^{s}_{n}(t-1)\big ]q^s_n(t)+(n-s)f^{s}_{n}(0)r^s_n(t)\\{} & {} \quad +\big [1-(n-s)f^{s}_{n}(n-s-1)\big ]k^s_n(t), \end{aligned}$$

and

\(q^s_n(t)=\left\{ \begin{array}{ll} 1~~~if~~ 0< t<n-s\\ 0~~~\textrm{otherwise} \end{array} \right.\); \(k^s_n(t)=\left\{ \begin{array}{ll} 1 ~~~if~~ t=n-s\\ 0 ~~~\textrm{otherwise} \end{array} \right.\); \(r^s_n(t)=\left\{ \begin{array}{ll} 1 ~~~~if~~ t=0\\ 0 ~~~~\textrm{otherwise} \end{array} \right.\)

\(\Psi\) is a cardinal–probabilistic interaction index if and only if \(f^{s}_{n}(n-s-1)\le \frac{2}{n-s}\), \(f^{s}_{n}(0)\ge 0\) and \(f^{s}_{n}(t)\ge \frac{t}{n-t-s}f^{s}_{n}(t-1)\) with \(0<t<n-s-1\).

Proof of Proposition 10

This result follows from the proof of Theorem 1 below. \(\square\)

Proof of Theorem 1

Grabisch and Roubens (1999a) have been proved that the following statements are equivalent.

  1. (i)

    \(\Psi\) satisfies the Linearity, Dummy and Symmetry axioms.

  2. (ii)

    For any game \(v\in TU(N)\), \(n\ge 1\), and \(S\subseteq N\), \(s\ge 1\), there exists a collection of real constants \(\{P^s_n(t)\}_{t=0,...,n-s}\), such that

    $$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{T\subseteq N\backslash S}P^s_n(t)\Delta _{S}v(T), \end{aligned}$$

    and for any \(S\nsubseteq N\), we have \(\Psi (v,S)=0.\)

It suffices to show that (ii) is equivalent to \(\Psi\) is AID.

\(\Psi {\textbf { is AID}}\Longrightarrow {\textbf {(ii)}}\) For any game \(v\in TU(N)\), \(n\ge 1\), if \(\Psi\) is AID, then, for any \(S\subseteq N\), \(s\ge 1\), there exists a collection of real constants \(\{f^{s}_{n}(t)\}_{t=0,...,n-s-1}\) such that,

$$\begin{aligned} \Psi (v, S)=\Psi ^{ext}(v,S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {(S\cup j)}} f^{s}_{n}(t)\times \Delta _{S\cup j} v(T). \end{aligned}$$

We know that,

$$\begin{aligned} \Delta _{S}v(T)=\displaystyle \sum _{L\subseteq S}(-1)^{s-l}v(L\cup T). \end{aligned}$$

For any player \(i\in S\), \(\Delta _{S}v(T)\) can be expressed recursively as follows:

$$\begin{aligned} \Delta _{S}v(T)=\Delta _{S\backslash i}v(T\cup i)-\Delta _{S\backslash i}v(T). \\ \Psi (v, S)= & {} \Psi ^{ext}(v,S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} f^{s}_{n}(t)\times \Delta _{S\cup j} v(T)\\= & {} \Delta _{S} v(N\backslash S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} f^{s}_{n}(t)\times \left[ \Delta _{S\backslash i} v(T\cup ij) - \Delta _{S\backslash i} v(T\cup j) \right. \\{} & {} -\left. \Delta _{S\backslash i} v(T\cup i)+ \Delta _{S\backslash i} v(T) \right] \\= & {} \Delta _{S} v(N\backslash S)-a+c+b-d, \end{aligned}$$

where

$$\begin{aligned} a= & {} \displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {(S\cup j)}}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup ij) =\displaystyle \sum _{j\in N\backslash S}\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ {j\in T} \end{array} }f^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T\cup i) \\= & {} \displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S\\ { T\ne \emptyset } \end{array}}\displaystyle \sum _{j\in T}f^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T\cup i) =\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}tf^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T\cup i)\\ b= & {} \displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup i) =\displaystyle \sum _{j\in N\backslash S}\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ {j \notin T} \end{array} }f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup i) \\= & {} \displaystyle \sum _{T\subset N\backslash S}\displaystyle \sum _{j\notin T\cup S}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup i) =\displaystyle \sum _{T\subset N\backslash S}(n-s-t)f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup i) \\ c= & {} \displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {(S\cup j)}}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup j) =\displaystyle \sum _{j\in N\backslash S}\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ {j\in T} \end{array} }f^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T)\\= & {} \displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}\displaystyle \sum _{j\in T}f^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T) =\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}tf^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T)\\ d= & {} \displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T) =\displaystyle \sum _{j\in N\backslash S}\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ {j \notin T} \end{array} }f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T)\\= & {} \displaystyle \sum _{T\subset N\backslash S}\displaystyle \sum _{j\notin T\cup S}f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T) =\displaystyle \sum _{T\subset N\backslash S}(n-s-t)f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T). \end{aligned}$$

Using the expressions of a, b, c and d, \(\Psi (v, S)\) can be written as:

$$\begin{aligned} \Psi (v, S)= & {} \Delta _{S} v(N\backslash S)-\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}tf^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T\cup i) +\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}tf^{s}_{n}(t-1)\times \Delta _{S\backslash i} v(T) \\{} & {} +\displaystyle \sum _{T\subset N\backslash S}(n-s-t)f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T\cup i)-\displaystyle \sum _{T\subset N\backslash S}(n-s-t)f^{s}_{n}(t)\times \Delta _{S\backslash i} v(T) \\= & {} \Delta _{S} v(N\backslash S)-\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash S \\ { T\ne \emptyset } \end{array}}tf^{s}_{n}(t-1)\big [\Delta _{S\backslash i} v(T\cup i)-\Delta _{S\backslash i} v(T)\big ]\\{} & {} +\displaystyle \sum _{T\subset N\backslash S}(n-s-t)f^{s}_{n}(t)\big [\Delta _{S\backslash i} v(T\cup i)-\Delta _{S\backslash i} v(T)\big ]\\= & {} \displaystyle \sum _{\begin{array}{c} T\subset N\backslash S \\ { T\ne \emptyset } \end{array}}\big [(n-s-t)f^{s}_{n}(t)-tf^{s}_{n}(t-1)\big ] \Delta _{S} v(T)+(n-s)f^{s}_{n}(0)\times \Delta _{S} v(\emptyset )\\{} & {} +\big [1-(n-s)\times f^{s}_{n}(n-s-1)\big ]\Delta _{S} V(N\backslash S) \\= & {} \displaystyle \sum _{T\subseteq N\backslash S }\big [(n-s-t)f^{s}_{n}(t)-tf^{s}_{n}(t-1)\big ]q^s_n(t) \Delta _{S} v(T)+\displaystyle \sum _{T\subseteq N\backslash S}(n-s)f^{s}_{n}(0)r^s_n(t)\Delta _{S} v(T)\\{} & {} +\displaystyle \sum _{T\subseteq N\backslash S}\big [1-(n-s)\times f^{s}_{n}(n-s-1)\big ]k^s_n(t)\Delta _{S} v(T)\\= & {} \displaystyle \sum _{T\subseteq N\backslash S} P^s_n(t)\Delta _{S} v(T) \end{aligned}$$

where \(q^s_n(t)=\left\{ \begin{array}{ll} 1~~~if~~ 0< t<n-s\\ 0~~~\textrm{otherwise} \end{array} \right.\); \(k^s_n(t)=\left\{ \begin{array}{ll} 1 ~~~if~~ t=n-s\\ 0 ~~~\textrm{otherwise} \end{array} \right.\); \(r^s_n(t)=\left\{ \begin{array}{ll} 1 ~~~~if~~ t=0\\ 0 ~~~~\textrm{otherwise}\end{array} \right.\) and

$$\begin{aligned} P^s_n(t)=\big [(n-s-t)f^{s}_{n}(t)-tf^{s}_{n}(t-1)\big ]q^s_n(t)+(n-s)f^{s}_{n}(0)r^s_n(t)+\big [1-(n-s)f^{s}_{n}(n-s-1)\big ]k^s_n(t). \end{aligned}$$

Finally, for all \(S\nsubseteq N\), for all \(T\subseteq N\backslash S\), we have \(\Delta _{S} v(T)=0\) (Fujimoto et al. 2006, page 76). We can deduce that \(\Psi (v,S)=0\).

\(\Psi {\textbf {is AID}}\Longleftarrow {\textbf {(ii)}}\) We suppose that, for any game \(v\in TU(N)\), \(n\ge 1\), and \(S\subseteq N\), \(s\ge 1\), there exists a collection of real constants \(\{P^s_n(t)\}_{t=0,...,n-s}\), such that,

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{T\subseteq N\backslash S}P^s_n(t)\Delta _{S} v(T). \end{aligned}$$

We set,

$$\begin{aligned} f^{s}_{n}(t)=\left\{ \begin{array}{llll} \frac{ P^s_n(0)}{n-s} ~~~~~~~~~~~~if~~ t=0\\ \\ \frac{1-P^s_n(n-s)}{n-s}~~~~~~~~if~~ t=n-s-1\\ \\ \frac{t \times f^{s}_{n}(t-1)+P^s_n(t)}{n-t-s} ~~~~otherwise \end{array} \right. . \end{aligned}$$

\(P^s_n(t)\) can be expressed as follows:

$$\begin{aligned} P^s_n(t)=\big [(n-s-t)f^{s}_{n}(t)-tf^{s}_{n}(t-1)\big ]q^s_n(t)+(n-s)f^{s}_{n}(0)r^s_n(t)+\big [1-(n-s)f^{s}_{n}(n-s-1)\big ]k^s_n(t). \end{aligned}$$

Finally, using the reverse of the first part of this proof, we can deduce that \(\Psi\) is an AID interaction index.

\(f^{s}_{n}(t)\) is simply given as follows:

$$\begin{aligned} f^{s}_{n}(t)=\left\{ \begin{array}{lll} \frac{ P^s_n(0)}{n-s} ~~~~~~~~~~~~if~~ t=0\\ \\ \frac{t \times f^{s}_{n}(t-1)+P^s_n(t)}{n-t-s} ~~~~otherwise \end{array} \right. \end{aligned}$$

since by linearity, everything is determined based on dirac games (\(e_K (S) = 1\) if \(S = K\) and 0 otherwise).

$$\begin{aligned} \Psi (e_N,S)=P^s_n(n-s)=1-(n-s)f^{s}_{n}(n-s-1) \end{aligned}$$

and then,

$$\begin{aligned} f^{s}_{n}(n-s-1)=\frac{1-P^s_n(n-s)}{n-s}. \end{aligned}$$

We conclude that, an interaction index is AID if and only if it satisfies the three axioms: Linearity, Dummy and Symmetry. \(\square\)

Proof of Proposition 2

  1. (i)

    The Shapley interaction index is AID and the associated coefficient is \(f^{s}_{n}(t)= \frac{(t+1)!(n-t-s-1)!}{(n-s+1)!}\), with \(0\le t\le n-s-1\). Moreover,

    $$\begin{aligned} \displaystyle \sum _{t=0}^{n-s-1}\left( ^{n-s-1}_{~~t}\right) 2f^{s}_{n}(t)= & {} 2\displaystyle \sum _{t=0}^{n-s-1}\left( ^{n-s-1}_{~~t}\right) \frac{(t+1)!(n-t-s-1)!}{(n-s+1)!}\\= & {} \frac{2}{(n-s+1)(n-s)}\displaystyle \sum _{t=0}^{n-s-1}(t+1)\\= & {} \frac{2}{(n-s+1)(n-s)}\bigg [ n-s+\frac{(n-s)(n-s-1)}{2}\bigg ] =1. \end{aligned}$$
  2. (ii)

    The Banzhaf interaction index is AID and the associated coefficient is

    $$\begin{aligned} f^{s}_{n}(t)=\left\{ \begin{array}{ll} \frac{1}{(n-s)2^{n-s}} ~~~~~~~~~~~~if~~ t=0\\ \\ \frac{t\times f^{s}_{n}(t-1)\times 2^{n-s}+1}{(n-t-s)2^{n-s}} ~~~~\textrm{otherwise} \end{array} \right. . \end{aligned}$$

    Moreover,

    $$\begin{aligned}{} & {} \displaystyle \sum _{t=0}^{n-s-1}\left( ^{n-s-1}_{~~t}\right) 2f^{s}_{n}(t)\\{} & {} \quad =\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-1}\left( ^{n-s-1}_{~~t}\right) \frac{t\times f^{s}_{n}(t-1)\times 2^{n-s}+1}{(n-t-s)2^{n-s-1}}\\{} & {} \quad = \frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-1}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}+2\displaystyle \sum _{t=1}^{n-s-1}\left( ^{n-s-1}_{t-1}\right) f^{s}_{n}(t-1)\\{} & {} \quad = \frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-1}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}+2\displaystyle \sum _{t=0}^{n-s-2}\left( ^{n-s-1}_{~~t}\right) f^{s}_{n}(t)\\{} & {} \quad =\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-1}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}+\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-2}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}\\{} & {} \qquad +2\displaystyle \sum _{t=0}^{n-s-3}\left( ^{n-s-1}_{~~t}\right) f^{s}_{n}(t)\\{} & {} \quad =\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-1}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}+\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{n-s-2}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}\\{} & {} \qquad +\cdots +\frac{1}{(n-s)2^{n-s-1}}+\displaystyle \sum _{t=1}^{1}\frac{\left( ^{n-s-1}_{~~t}\right) }{(n-t-s)2^{n-s-1}}+\frac{1}{(n-s)2^{n-s-1}}\\{} & {} \quad =\left( ^{n-s-1}_{~~0}\right) \frac{1}{2^{n-s-1}}+\left( ^{n-s-1}_{~~1}\right) \frac{1}{2^{n-s-1}}+\left( ^{n-s-1}_{~~2}\right) \frac{1}{2^{n-s-1}}+\cdots +\left( ^{n-s-1}_{n-s-1}\right) \frac{1}{2^{n-s-1}}\\{} & {} \quad =\frac{1}{2^{n-s-1}}\displaystyle \sum _{t=0}^{n-s-1}\left( ^{n-s-1}_{~~t}\right) \\{} & {} \quad =1. \end{aligned}$$

\(\square\)

Proof of Proposition 4

Following Proposition 3, if a one-point solution \(\Psi\) is CH-decomposable, then there exists a unique CH-decomposer \(\varphi\) that is itself CH-decomposable. For any game \(v\in TU(N)\), i and j two players, Theorem 4 (page 40) of Casajus and Huettner (2018) shows that \(\left[ \varphi (v, i)-\varphi (v^{N\backslash j}, i)\right] =\left[ \varphi (v, j)-\varphi (v^{N\backslash i}, j)\right] .\) Thus, \(\Psi (v,i)=\varphi (v,i) +\displaystyle \sum _{j\in N\backslash i}\left[ \varphi (v, i)-\varphi (v^{N\backslash j}, i)\right]\). \(\Psi\) is I-decomposable and \(\varphi\) is an I-decomposer.

It is easier to show by induction on n that if a one-point solution is I-decomposable, then its I-decomposer is unique (see the proof of Proposition 5 below). \(\square\)

Proof of Proposition 5

Let \(\varphi\) and \(\varphi ^{'}\) be two C-decomposers of \(\Psi\). Given a game \(v \in TU (N)\) and for all \(S\in 2^N\backslash \emptyset\) a coalition, we will show by induction on the cardinality of n that \(\varphi (v,S)=\varphi ^{'}(v,S).\)

Induction basis: given a game \(v \in TU (N)\) and for all \(S\in 2^N\backslash \emptyset\), if \(n=1\) then, \(\Psi (v,S)=\varphi (v,S)=\varphi ^{'}(v,S)\).

Induction hypothesis: given a game \(v \in TU (N)\) and for all \(S\in 2^N\backslash \emptyset\) with \(2\le n\le k\) \((k\in {\mathbb {N}})\), we suppose that \(\varphi (v,S)=\varphi ^{'}(v,S)\)

Induction step: given a game \(v \in TU (N)\) with \(n=k+1\) and for all \(S\in 2^N\backslash \emptyset\),

$$\begin{aligned} \Psi (v,S)= & {} \varphi (v,S) +\displaystyle \sum _{j\in N\backslash S}\left[ \varphi (v, S)-\varphi (v^{N\backslash j}, S)\right] \\= & {} \varphi ^{'}(v,S) +\displaystyle \sum _{j\in N\backslash S}\left[ \varphi ^{'}(v^N, S)-\varphi ^{'}(v^{N\backslash j}, S)\right] .\\ (n-s+1)\varphi (v,S) -\displaystyle \sum _{j\in N\backslash S}\varphi (v^{N\backslash j}, S)= & {} (n-s+1)\varphi ^{'}(v,S) -\displaystyle \sum _{j\in N\backslash S}\varphi ^{'}(v^{N\backslash j}, S) \\ (n-s+1)\varphi (v,S)= & {} (n-s+1)\varphi ^{'}(v,S) \\ \varphi (v,S)= & {} \varphi ^{'}(v,S). \end{aligned}$$

\(\square\)

Lemma 1

An interaction index \(\Psi\) satisfies the Recursive axiom if and only if \(\Psi\) is defined as follows.

For every game \(v \in TU (N)\) with \(n\ge 2\), \(S\subseteq N\) a coalition of N with \(2 \le s\le n\) and any player \(i\in S,\) we have

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i)}_{\cup ((S\backslash i)\backslash T)}, i\big ). \end{aligned}$$

Proof of Lemma 1

\(\Longleftarrow )\) We will show that the interaction index \(\Psi\) satisfies the Recursive axiom.

For all game \(v \in TU (N)\) with \(n\ge 2\), \(S\subseteq N\) a coalition of N with \(2 \le s\le n\) and any player \(i\in S.\) W.l.o.g. we suppose that \(S:=\{i_1,i_2,...,i_s\}\) and \(i=i_1\). We have,

$$\begin{aligned} \Psi (v^{N\backslash i_s}_{\cup i_s},S\backslash i_s)=\displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup (S\backslash i_1)\backslash T}, i_1\big ) \end{aligned}$$

and

$$\begin{aligned} \Psi (v^{N\backslash i_s},S\backslash i_s)=\displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash (T\cup i_s))}, i_1\big ). \end{aligned}$$

Furthermore,

$$\begin{aligned}\psi(v,S)= & {} \displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big )\\= & {} \displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subset S\backslash i_1 \\ {t=\beta ;~i_s\notin T } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ) +\displaystyle \sum _{\beta =1}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i_1 \\ {t=\beta };~ i_s\in T \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ) \\= & {} \displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big )+\displaystyle \sum _{\beta =1}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta -1} \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash (T\cup i_s))}, i_1\big ) \\= & {} \displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s\\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big )+\displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta +1}\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash (T\cup i_s))}, i_1\big )\\= & {} \displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big )-\displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash (T\cup i_s))}, i_1\big )\\= & {} \Psi (v^{N\backslash i_s}_{\cup i_s},S\backslash i_s)-\Psi (v^{N\backslash i_s},S\backslash i_s). \end{aligned}$$

\(\Psi\) satisfies the Recursive axiom.

\(\Longrightarrow )\) We suppose that an interaction index \(\Psi\) satisfies the Recursive axiom. Let us show by induction on the cardinality of the coalition that \(\Psi\) is defined as follows:

For all game \(v \in TU (N)\) with \(n\ge 2\) and \(S\subseteq N\) a coalition of N \((2 \le s\le n)\). W.l.o.g., we suppose that\(\{i_1,i_2,...,i_s\}\).

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1) \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ). \end{aligned}$$

Induction basis: for all game \(v \in TU (N)\) and S any coalition of N containing two players. Let \(i_1\) and \(i_2\) be these two players. Since \(\Psi\) satisfies the Recursive axiom, we have

$$\begin{aligned} \Psi (v,S)= & {} \Psi (v^{N\backslash i_2}_{\cup i_2}, i_1)-\Psi (v^{N\backslash i_2}, i_1) =\displaystyle \sum _{\beta =0}^{2-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq i_2 \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash i_2}_{\cup (i_2\backslash T)}, i_1\big ). \end{aligned}$$

Induction hypothesis: for all game \(v \in TU (N)\) with \(n\ge 2\), let \(k\in {\mathbb {N}}\) be any integer such that \(k\le n\) and let \(S=\{i_1,i_2,...,i_s\}\) be any coalition of N with \(2<s\le k\). We suppose that

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1) \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ). \end{aligned}$$

Induction step: for all game \(v \in TU (N)\) with \(n\ge 2\), \(n>k\); \(S:=\{i_1,i_2,...,i_s\}\) any coalition of N with \(s=k+1\). Let us show that,

$$\begin{aligned} \Psi (v,S)=\displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1) \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ). \end{aligned}$$
$$\begin{aligned} \Psi (v,S)= & {} \Psi (v^{N\backslash i_s}_{\cup i_s},S\backslash i_s)-\Psi (v^{N\backslash i_s},S\backslash i_s)\\= & {} \displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big )-\displaystyle \sum _{\beta =0}^{s-2}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq (S\backslash i_1)\backslash i_s \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash (T\cup i_s))}, i_1\big )\\= & {} \displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i_1 \\ {t=\beta } \end{array}}~\Psi \big (v^{N\backslash (S\backslash i_1)}_{\cup ((S\backslash i_1)\backslash T)}, i_1\big ). \end{aligned}$$

\(\square\)

Proof of Theorem 2

Let \(\Psi\) be a CH-decomposable interaction index. From Proposition 4, the I-decomposer is unique and coincides with the unique CH-decomposable CH-decomposer. Using Proposition 3, the I-decomposer is the interaction index \(\varphi\) given by: for all game \(v\in TU (N)\) and for all \(j\in N\),

$$\begin{aligned} \varphi (v, j)=\displaystyle \sum _{\begin{array}{c} T\subseteq N \\ {j\in T} \end{array}}\frac{\lambda _{v^{\Psi }}(T) }{t^{2}}. \end{aligned}$$
(A1)

Let us show by induction that the unique C-decomposer of the interaction index \(\Psi\) is the interaction index \(\Psi ^{d}\) defined as follows:

For all game \(v \in TU (N)\), for all coalition \(S\in 2^N\backslash \emptyset\) and for any player \(i\in S\),

$$\begin{aligned} \Psi ^{d}(v,S)=\left\{ \begin{array}{lll}\displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i \\ {t=\beta } \end{array}}~\varphi \big (v^{N\backslash (S\backslash i)}_{\cup ((S\backslash i)\backslash T)}, i\big )~~~~~~~~if~~ s\ge 2\\ \\ \varphi (v,i)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~~ s=1 \end{array} \right. . \end{aligned}$$

From Lemma 1, \(\Psi ^{d}\) satisfies the Recursive axiom when the coalition contains more than one player.

Induction basis: for all game \(v \in TU (N)\), \(S\in 2^N\backslash \emptyset\), if \(s=1\) ( that is \(S=i\)) then \(\Psi\) is I-decomposable from the hypothesis and the I-decomposer is the interaction index \(\varphi\).

$$\begin{aligned} \Psi ^{d}(v, i)=\varphi (v, i). \end{aligned}$$

Induction hypothesis: for all game \(v \in TU (N)\), let \(k\in {\mathbb {N}}\) be any integer such that \(k\le n\) and let S be any coalition of N with \(2\le s\le k\). We suppose that:

$$\begin{aligned} \Psi (v,S)=\Psi ^{d}(v,S)+\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{d}(v,S)-\Psi ^{d}(v^{N\backslash j},S)\right] . \end{aligned}$$

Induction step: for all game \(v \in TU (N)\), \(n> k\) and \(S\in 2^N\) such that \(s=k+1\). Let us show that:

$$\begin{aligned} \Psi (v,S)=\Psi ^{d}(v,S)+\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{d}(v,S)-\Psi ^{d}(v^{N\backslash j},S)\right] . \end{aligned}$$

Let \(i\in S\). Since \(\Psi\) satisfies the Recursive axiom, we have

$$\begin{aligned} \Psi (v,S)= & {} \Psi (v^{N\backslash i}_{\cup i},S\backslash i)-\Psi (v^{N\backslash i},S\backslash i)\\= & {} \Psi ^{d}(v^{N\backslash i}_{\cup i},S\backslash i)+\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{d}(v^{N\backslash i}_{\cup i},S\backslash i)-\Psi ^{d}(v^{N\backslash ij}_{\cup i},S\backslash i)\right] \\{} & {} -\Psi ^{d}(v^{N\backslash i},S\backslash i)-\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{d}(v^{N\backslash i},S\backslash i)-\Psi _{d}(v^{N\backslash ij},S\backslash i)\right] \\= & {} \Psi ^{d}(v^{N\backslash i}_{\cup i},S\backslash i)-\Psi ^{d}(v^{N\backslash i},S\backslash i)+\displaystyle \sum _{j\in N\backslash S}\left[ \left( \Psi ^{d}(v^{N\backslash i}_{\cup i},S\backslash i)\right. \right. \\{} & {} \left. \left. -\Psi ^{d}(v^{N\backslash i},S\backslash i)\right) -\left( \Psi ^{d}(v^{N\backslash ij}_{\cup i},S\backslash i)-\Psi ^{d}(v^{N\backslash ij},S\backslash i)\right) \right] \\= & {} \Psi ^{d}(v,S)+\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{d}(v,S)-\Psi ^{d}(v^{N\backslash j},S)\right] . \end{aligned}$$

Since \(\Psi ^{d}\) satisfies the Recursive axiom. \(\Psi ^{d}\) is a C-decomposer of the interaction index \(\Psi\). \(\Psi\) is C-decomposable and from Proposition 5, the C-decomposer is unique. \(\square\)

Proof of Proposition 7

Let \(v \in TU(N)\) (\(n\ge 2\)) be a game on N and \(S\in 2^N\) with \(s\ge 2\). Let \(j\in S\),

$$\begin{aligned} \begin{array}{lll} \Psi ^{Ch}(v,S)&{}=&{}\displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-1)!(n-t-s)!}{n!}\Delta _{S}v(T)\\ &{} =&{}\displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-1)!(n-t-s)!}{n!}\Delta _{S\backslash j}v(T\cup j)- \displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-1)!(n-t-s)!}{n!}\Delta _{S\backslash j}v(T)\\ &{}=&{}\displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash (S\backslash j) \\ {j\in T} \end{array}}\frac{s(s+t-2)!(n-t-s+1)!}{n!}\Delta _{S\backslash j}v(T)- \displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-1)!(n-t-s)!}{n!}\Delta _{S\backslash j}v(T)\\ &{}=&{}\displaystyle \sum _{T\subseteq N\backslash (S\backslash j)}\frac{s(s+t-2)!(n-t-s+1)!}{n!}\Delta _{S\backslash j}v(T)\\ &{}-&{} \displaystyle \sum _{\begin{array}{c} T\subseteq N\backslash (S\backslash j) \\ {j\notin S} \end{array}}\frac{s(s+t-2)!(n-t-s+1)!}{n!}\Delta _{S\backslash j}v(T) - \displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-1)!(n-t-s)!}{n!}\Delta _{S\backslash j}v(T)\\ &{}=&{}\displaystyle \sum _{T\subseteq N\backslash (S\backslash j)}\frac{s(s+t-2)!(n-t-s+1)!}{n!}\Delta _{S\backslash j}v(T)\\ &{}&{}-\displaystyle \sum _{T\subseteq N\backslash S}\frac{s(s+t-2)!(n-t-s)!(n-t-s+1+s+t-1)}{n!}\Delta _{S\backslash j}v(T)\\ &{}=&{} s\displaystyle \sum _{T\subseteq N\backslash (S\backslash j)}\frac{(s+t-2)!(n-t-s+1)!}{n!}\Delta _{S\backslash j}v(T)- s\displaystyle \sum _{T\subseteq N\backslash S}\frac{(s+t-2)!(n-t-s)!}{(n-1)!}\Delta _{S\backslash j}v(T)\\ &{}=&{}\displaystyle \frac{s}{s-1}\left[ \Psi ^{Ch}(v,S\backslash j)-\Psi ^{Ch}(v^{N\backslash j},S\backslash j)\right] . \end{array} \end{aligned}$$

For any \(i\in S\), we repeatedly apply this process and we obtain,

$$\begin{aligned} \Psi ^{Ch}(v,S)=\left( \displaystyle \prod ^{s-2}_{l=0}\frac{s-l}{s-l-1}\right) \displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i \\ {t=s-\beta -1} \end{array}}~\Psi ^{Ch}(v^{N\backslash ((S\backslash i)\backslash T)}, i). \end{aligned}$$

Finally, by induction on the cardinality of S, we obtain

$$\begin{aligned} \Psi ^{Ch}(v,S)= s\Psi ^{dc}(v,S)+\displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^{dc}(v,S)-\Psi ^{dc}(v^{N\backslash j},S)\right] , \end{aligned}$$

where

$$\begin{aligned} \Psi ^{dc}(v,S)=\left\{ \begin{array}{lll}\left( \displaystyle \prod ^{s-2}_{l=0}\frac{s-l}{s-l-1}\right) \displaystyle \sum _{\beta =0}^{s-1}(-1)^{\beta }\displaystyle \sum _{\begin{array}{c} T\subseteq S\backslash i \\ {t=s-\beta -1} \end{array}}~\varphi (v^{N\backslash ((S\backslash i)\backslash T)}, i)~~~~~~~~if~~ s\ge 2\\ \\ \varphi (v,i)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~if~~ s=1 \end{array} \right. . \end{aligned}$$

\(\varphi\) is the unique I-decomposer of the Shapley solution and is given by Eq. (A1). The chaining interaction index is not C-decomposable. \(\square\)

Proof of Proposition 8

Let \(\Psi ^c\) be a cardinal–probabilistic interaction index applied to a game \(v\in TU (N)\). From Proposition 1, for any non-empty coalition \(S\subseteq N\),

$$\begin{aligned} \Psi ^c(v,S)=\Psi ^{ext}(v,S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} f^{s}_{n}(t)\times \Delta _{S\cup j} v(T) \end{aligned}$$

where \(f^{s}_{n}(t)\) is given by

$$\begin{aligned} f^{s}_{n}(t)=\left\{ \begin{array}{lll} \frac{ P^s_n(0)}{n-s} ~~~~~~~~~~~~if~~ t=0\\ \frac{t \times f^{s}_{n}(t-1)+P^s_n(t)}{n-t-s} ~~~~otherwise\\ \end{array} \right. \\ \end{aligned}$$

and the set \(\{P^s_n(t)\}_{t=0,...,n-s}\) are nonnegative constants associated to the cardinal–probabilistic interaction index. According to Fujimoto et al. (2006), the coefficients \(P^s_n(t)\) obey the recurrence relation:

$$\begin{aligned} P^s_{n}(t)+P^s_{n}(t+1)=P^s_{n-1}(t). \end{aligned}$$

\(\Psi ^c(V,S)+ \displaystyle \sum _{j\in N\backslash S}\left[ \Psi ^c(v,S)-\Psi ^c(v^{N\backslash j},S)\right]\)

$$\begin{aligned}= & {} \Psi ^{ext}(v,S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} f^{s}_{n}(t)\times \Delta _{S\cup j} v(T)+\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} P^s_{n}(t+1)\Delta _{S\cup j} v(T)\\= & {} \Psi ^{ext}(v,S)-\displaystyle \sum _{j\in N\backslash S}~\displaystyle \sum _{T\subseteq N\backslash {S\cup j}} \big [f^{s}_{n}(t)-P^s_{n}(t+1)\big ]\Delta _{S\cup j} v(T)\\= & {} \Psi ^{A}(v,S). \end{aligned}$$

From Proposition 5, the C-decomposer is unique. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Courtin, S., Tido Takeng , R. & Chantreuil, F. Decomposition of interaction indices: alternative interpretations of cardinal–probabilistic interaction indices. Theory Decis (2024). https://doi.org/10.1007/s11238-023-09970-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11238-023-09970-8

Keywords

Navigation