Skip to main content
Log in

Channel and queue aware joint relay selection and resource allocation for MISO-OFDMA based user-relay assisted cellular networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

User-relay assisted orthogonal frequency division multiple access (OFDMA) networks are cost-effective solutions to meet the growing capacity and coverage demands of the next generation cellular networks. These networks can be used with multiple antennas technology in order to obtain a diversity gain to combat signal fading and to obtain more capacity gain without increasing the bandwidth or transmit power. Efficient relay selection and resource allocation are crucial in such a multi-user, multi-relay and multi-antenna environment to fully exploit the benefits of the combination of user-relaying and multiple antennas technology. Thus, we propose a channel and queue aware joint relay selection and resource allocation algorithm for multiple-input single-output (MISO)-OFDMA based user-relay assisted downlink cellular networks. Since, the proposed algorithm is not only channel but also queue-aware, the system resources are allocated efficiently among the users. The proposed algorithm for the MISO-OFDMA based user-relay assisted scheme is compared to existing MISO-OFDMA based non-relaying and fixed relay assisted schemes and it is also compared with the existing single-input single-output (SISO)-OFDMA based user-relay assisted scheme. Simulation results revealed that the proposed scheme outperforms the existing schemes in terms of cell-edge users’ total data rate, average backlog and average delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Andrews, J. G., Ghosh, A., & Muhamed, R. (2007). Fundamentals of WiMAX: Understanding broadband wireless networking. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  2. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  3. Pabst, R., Walke, B. H., Schultz, D. C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., et al. (2004). Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Wireless Communication Magazine, 42(9), 80–89.

    Article  Google Scholar 

  4. Le, L., & Hossain, E. (2007). Multihop cellular networks: Potential gains, research challenges, and a resource allocation framework. IEEE Communication Magazine, 45(9), 66–73.

    Article  Google Scholar 

  5. Kim, J., Lee, J., Son, K., Song, S., & Chong, S. (2012). Two-hop opportunistic scheduling in cooperative cellular networks. IEEE Transactions on Vehicular Technology, 61(9), 4194–4198.

    Article  Google Scholar 

  6. Yanikomeroglu, H. (2002). Fixed and mobile relaying technologies for cellular networks. In: Second workshop on applications and services in wireless networks (ASWN) (pp. 75–81), Paris, France.

  7. Bakaimis, B., & Lestable, T. (2005). Connectivity investigation of mobile relays for next generation wireless systems. In Proceedings of IEEE vehicular technology conference (VTC)-Spring (pp. 2192–2195), Stockholm.

  8. Morosi, S., Del Re, E., Jayousi, S., & Suffritti, R. (2009) Hybrid satellite/terrestrial cooperative relaying strategies for DVB-SH based communication systems. In Proceedings of the European wireless conference (EW), Aalborg, Denmark.

  9. Nourizadeh, H., Nourizadeh, S., & Tafazolli, R. (2006). Performance evaluation of cellular networks with mobile and fixed relay station. In Proceedings of IEEE vehicular technology conference (VTC)-Fall (pp. 1–5), Canada.

  10. Hoymann, C., Wanshi, C., Montojo, J., Golitschek, A., Chrysostomos, K., & Xiaodong, S. (2012). Relaying operation in 3GPP LTE: Challenges and solutions. IEEE Communications Magazine, 50(2), 156–162.

    Article  Google Scholar 

  11. Xiao, L., Fuja, T. E., & Costello, D. J. (2010). Mobile relaying: Coverage extension and throughput enhancement. IEEE Transactions on Communications, 58(9), 2709–2717.

    Article  Google Scholar 

  12. Sui, Y., Papadogiannis, A., & Svensson, T. (2012). The potential of moving relays—A performance analysis. In Proceedings of IEEE vehicular technology conference (VTC)-Spring (pp. 1–5), Japan.

  13. Tehrani, M., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  14. Chin, W. H., Fan, Z., & Haines, R. (2014). Emerging technologies and research challenges for 5G wireless networks. IEEE Wireless Communications, 21(2), 106–112.

    Article  Google Scholar 

  15. Salem, M., Adinoyi, A., Yanikomeroglu, H., & Falconer, D. D. (2010). Opportunities and challenges in OFDMA-based cellular relay networks: A radio resource management perspective. IEEE Transactions on Vehicular Technology, 59(5), 2496–2510.

    Article  Google Scholar 

  16. Salem, M., Adinoyi, A., Rahman, M., Yanikomeroglu, H., Falconer, D. D., Kim, Y., et al. (2010). An overview of radio resource management in relay-enhanced OFDMA-based networks. IEEE Communications Surveys and Tutorials, 12(3), 422–438.

    Article  Google Scholar 

  17. Nam, W., Chang, W., Chung, S. Y., & Lee, Y. (2007).Transmit optimization for relay-based cellular OFDMA systems. In Proceedings of IEEE international conference on communications (ICC) (pp. 5714–5719), Glasgow, Scotland.

  18. Huang, L., Rong, M., Wang, L., Xue, Y., & Schulz, E. (2007). Resource allocation for OFDMA based relay enhanced cellular networks. In Proceedings of IEEE vehicular technology conference (VTC)-Spring (pp. 3160–3164), Dublin.

  19. Kaneko, M., Popovski, P., & Hayashi, K. (2009). Throughput-guaranteed resource-allocation algorithms for relay-aided cellular OFDMA system. IEEE Transactions on Vehicular Technology, 58(4), 1951–1964.

    Article  Google Scholar 

  20. Ng, D., & Schober, R. (2010). Cross-layer scheduling for OFDMA amplify and-forward relay networks. IEEE Transactions on Vehicular Technology, 59(3), 1443–1458.

    Article  Google Scholar 

  21. Oyman, O. (2010). Opportunistic scheduling and spectrum reuse in relay-based cellular networks. IEEE Transactions on Wireless Communications, 9(3), 1074–1085.

    Article  Google Scholar 

  22. Choi, B. G., Bae, S. J., Cheon, K., Park, A. S., & Chung, M. Y. (2011). Relay selection and resource allocation schemes for effective utilization of relay zones in relay-based cellular networks. IEEE Communication Letters, 15(4), 407–409.

    Article  Google Scholar 

  23. Alam, M. S., Mark, J. W., & Shen, X. (2013). Relay selection and resource allocation for multi-user cooperative OFDMA networks. IEEE Transactions on Wireless Communications, 12(5), 2193–2205.

    Article  Google Scholar 

  24. Alazemi, H. M. K., & Uddin, M. F. (2013). Fair resource allocation and DF relay selection for multiuser OFDMA-based cooperative networks. Wireless Personal Communications, 19(6), 1485–1496.

    Google Scholar 

  25. Yanyan, S., Gang, F., Bo, Y., & Xinping, G. (2014). Resource allocation with proportional rate fairness in orthogonal frequency division multiple access relay networks. Wireless Communications and Mobile Computing, 14(2), 269–283.

    Article  Google Scholar 

  26. Navaie, K., & Mokari, N. (2014). Relay assisted OFDMA spectrum sharing systems. Transactions on Emerging Telecommunications Technologies, 25(5), 515–529.

    Article  Google Scholar 

  27. Han, Z., Himsoon, T., Siriwongpairat, W. P., & Liu, K. J. R. (2009). Resource allocation for multiuser cooperative OFDM networks: Who helps whom and how to cooperate. IEEE Transactions on Vehicular Technology, 58(5), 2378–2391.

    Article  Google Scholar 

  28. Shim, W., Han, Y., & Kim, S. (2010). Fairness-aware resource allocation in a cooperative OFDMA uplink system. IEEE Transactions on Vehicular Technology, 59(2), 932–939.

    Article  Google Scholar 

  29. Ng, T. C. Y., & Yu, W. (2007). Joint optimization of relay strategies and resource allocations in cooperative cellular networks. IEEE Journal on Selected areas in Communications, 25(2), 328–339.

    Article  Google Scholar 

  30. Weng, L., & Murch, R. D. (2009). Cooperation strategies and resource allocations in multiuser OFDMA systems. IEEE Transactions on Vehicular Technology, 58(5), 2331–2342.

    Article  Google Scholar 

  31. Calcev, G., & Bonta, J. (2009). OFDMA cellular networks with opportunistic two-hop relays. EURASIP Journal on Wireless Communications and Networking. doi:10.1155/2009/702659.

  32. Papadogiannis, A., Alexandropoulos, G. C., Burr, A., & Grace, D. (2012). Bringing mobile relays for wireless access networks into practice-learning when to relay. IET Communications, 6(6), 618–627.

    Article  Google Scholar 

  33. Shenghong, L., & Murch, R. D. (2013). Realizing cooperative multiuser OFDMA systems with subcarrier resource allocation. IEEE Transactions on Wireless Communications, 12(4), 1923–1935.

    Article  Google Scholar 

  34. Basturk, I., Ozbek, B., Edemen, C., Tan, A. S., Zeydan, E., & Ergut, S. (2013). Radio resource management for OFDMA-based mobile relay enhanced heterogenous cellular networks. In Proceedings of IEEE vehicular technology conference (VTC)-Spring, Dresden, Germany.

  35. Basturk, I., Ozbek, B. (2015). Resource allocation for user-relay assisted MISO-OFDMA networks. In Proceedings international symposium on wireless communication systems (ISWCS), Brussels, Belgium.

  36. Basturk, I., & Ozbek, B. (2016). Radio resource management for user-relay assisted OFDMA-based wireless networks. International Journal of Electronics and Communications (AEU), 70(5), 643–651.

    Article  Google Scholar 

  37. Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.

    Article  Google Scholar 

  38. Kobayashi, M., & Caire, G. (2007). Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE Journal on Selected Areas in Communications, 25(7), 1468–1477.

  39. Parag, P., Bhashyam, S., & Aravind, R. (2005). A subcarrier allocation algorithm for OFDMA using buffer and channel state information. In Proceedings of IEEE vehicular technology conference (VTC)-Fall.

  40. Salem, M., Adinoyi, A., Rahman, M., Yanikomeroglu, H., Falconer, D., Kim, Y. D., & Kim, E. (2009). Fairness-aware joint routing and scheduling in OFDMA-based multi-cellular fixed relay networks. In Proceedings of IEEE international communications conference (ICC), Dresden.

  41. Salem, M., Adinoyi, A., Yanikomeroglu, H., Falconer, D. D., & Kim, Y. (2009). A fair radio resource allocation scheme for ubiquitous high-data-rate coverage in OFDMA based cellular relay networks. In Proceedings IEEE global telecommunication conference (GLOBECOM), Honolulu.

  42. Park, C. W., Lee, H. J., & Lim, J. T. (2012). Fair semi-distributed resource allocation scheme over relay-enhanced OFDMA networks. IEEE Communication Letters, 16(8), 1188–1191.

    Article  Google Scholar 

  43. Hajipour, J., Mohamed, A., & Leung, V. C. M. (2016). Channel-, queue-, and delay-aware resource allocation in buffer-aided relay-enhanced OFDMA networks. IEEE Transactions on Vehicular Technology, 65(4), 2397–2412.

    Article  Google Scholar 

  44. Basturk, I., Ozbek, B., & Le Ruyet, D. (2013). Queue aware resource allocation for OFDMA-based mobile relay enhanced networks. In Proceedings international symposium on wireless communication systems (ISWCS), Ilmenau, Germany.

  45. Viswanathan, H., & Mukherjee, S. (2005). Performance of cellular networks with relays and centralized scheduling. IEEE Transactions on Wireless Communicatios, 4(5), 2318–2328.

    Article  Google Scholar 

  46. Neely, M., Modiano, E., & Rohrs, C. E. (2005). Dynamic power allocation and routing for time-varying wireless networks. IEEE Journal on Selected Areas in Communications, 23(1), 89–103.

    Article  Google Scholar 

  47. Tu, Z., & Blum, R. S. (2003). Multiuser diversity for a dirty paper approach. IEEE Communications Letters, 7(8), 370–372.

    Article  Google Scholar 

  48. Liu, T., Rong, M., Shi, H., Yu, D., Xue, Y., & Schulz, E. (2006). Partitioning in fixed two-hop cellular relaying network. In Proceedings of IEEE wireless communications and networking conference (WCNC), Las Vegas, NV, USA.

  49. Cinar, M. (2010). Implementation of relay-based systems in wireless cellular networks, M. Sc. Thesis, Izmir Institute of Technology.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhan Baştürk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baştürk, İ., Özbek, B. Channel and queue aware joint relay selection and resource allocation for MISO-OFDMA based user-relay assisted cellular networks. Telecommun Syst 67, 619–633 (2018). https://doi.org/10.1007/s11235-017-0363-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-017-0363-7

Keywords

Navigation