Skip to main content
Log in

Necessary integrability conditions for evolutionary lattice equations

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the structure of solutions of the Lax equation Dt(G) = [F,G] for formal series in powers of the shift operator. We show that if an equation with a given series F of degree m admits a solution G of degree k, then it also admits a solution H of degree m such that Hk = Gm. We use this property to derive necessary integrability conditions for scalar evolutionary lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Sokolov and A. B. Shabat, Sov. Sci. Rev. Sec. C, 4, 221–280 (1984).

    MATH  MathSciNet  Google Scholar 

  2. A. V. Mikhailov, A. B. Shabat, and R. I. Yamilov, Russ. Math. Surveys, 42, No. 4, 1–63 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  3. V. V. Sokolov, Russ. Math. Surveys, 43, No. 5, 165–204 (1988).

    Article  ADS  MATH  Google Scholar 

  4. A. V. Mikhailov, A. B. Shabat, and V. V. Sokolov, “The symmetry approach to classification of integrable equations,” in: What is Integrability? (V. E. Zakharov, ed.), Springer, Berlin (1991), pp. 115–184.

    Chapter  Google Scholar 

  5. A. B. Shabat and A. V. Mikhailov, “Symmetries — test of integrability,” in: Important Developments in Soliton Theory (A. S. Fokas and V. E. Zakharov, eds.), Springer, Berlin (1993), pp. 355–372.

    Chapter  Google Scholar 

  6. A. G. Meshkov and V. V. Sokolov, Ufimsk. Mat. Zh., 4, 104–154 (2012); arXiv:1302.6010v2 [nlin.SI] (2013).

    MATH  Google Scholar 

  7. R. I. Yamilov, Russ. Math. Surveys, 38, No. 6, 155–156 (1983).

    Google Scholar 

  8. A. B. Shabat and R. I. Yamilov, Leningrad Math. J., 2, 377–400 (1991).

    MATH  MathSciNet  Google Scholar 

  9. D. Levi and R. I. Yamilov, J. Math. Phys., 38, 6648–6674 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. R. I. Yamilov, J. Phys. A, 39, R541–R623 (2006).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. V. E. Adler, J. Phys. A, 41, 145201 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Schur, Sitzungsber. Berl. Math. Ges., 4, 2–8 (1905).

    Google Scholar 

  13. O. I. Bogoyavlenskii, Russ. Math. Surveys, 46, No. 3, 1–64 (1991).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. V. E. Adler and V. V. Postnikov, J. Phys. A, 44, 415203 (2011).

    Article  MathSciNet  Google Scholar 

  15. R. N. Garifullin and R. I. Yamilov, J. Phys. A, 45, 345205 (2012).

    Article  MathSciNet  Google Scholar 

  16. R. N. Garifullin, A. V. Mikhailov, and R. I. Yamilov, Theor. Math. Phys., 180, 765–780 (2014).

    Article  Google Scholar 

  17. S. I. Svinolupov, Theor. Math. Phys., 65, 1177–1180 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  18. I. M. Gel’fand and L. A. Dikii, Funct. Anal. Appl., 10, 259–273 (1976).

    Article  Google Scholar 

  19. G. Wilson, Quart. J. Math., 32, 491–512 (1981).

    Article  MATH  Google Scholar 

  20. R. M. Miura, C. S. Gardner, and M. D. Kruskal, J. Math. Phys., 9, 1204–1209 (1968).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. H. Flaschka, Quart. J. Math., 34, 61–65 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  22. H. H. Chen, Y. C. Lee, and C. S. Liu, Phys. Scr., 20, 490–492 (1979).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. A. G. Meshkov, Inverse Probl., 10, 635–653 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. B. A. Kupershmidt, Astérisque, 123 (1985).

  25. P. E. Hydon and E. L. Mansfield, Found. Comput. Math., 4, 187–217 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Jimbo and T. Miwa, Publ. Res. Inst. Math. Sci., 19, 943–1001 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  27. V. G. Kac and A. K. Raina, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (Adv. Ser. Math. Phys., Vol. 2), World Scientific, Singapore (1987).

    MATH  Google Scholar 

  28. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reidel, Dordrecht (1974).

    Google Scholar 

  29. I. V. Cherednik, Funct. Anal. Appl., 12, 195–203 (1978).

    Article  MathSciNet  Google Scholar 

  30. R. I. Yamilov, “Symmetries as integrability criteria,” in: Continuous Symmetries and Integrability of Discrete Equations (D. Levi, P. Winternitz, and R. I. Yamilov, eds.) (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Adler.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 181, No. 2, pp. 276–295, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adler, V.E. Necessary integrability conditions for evolutionary lattice equations. Theor Math Phys 181, 1367–1382 (2014). https://doi.org/10.1007/s11232-014-0218-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-014-0218-2

Keywords

Navigation