Skip to main content
Log in

Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We determine the rate with which finitely multiple approximations in the Feynman formula converge to the exact expression for the equilibrium density operator of a harmonic oscillator in the linear τ-quantization. We obtain an explicit analytic expression for a finitely multiple approximation of the equilibrium density operator and the related Wigner function. We show that in the class of τ-quantizations, the equilibrium Wigner function of a harmonic oscillator is positive definite only in the case of the Weyl quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. R. Chernoff, J. Funct. Anal., 2, 238–242 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. P. Feynman, Rev. Modern Phys., 20, 367–387 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  3. R. P. Feynman, Phys. Rev., 84, 108–128 (1951).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. O. G. Smolyanov, A. G. Tokarev, and A. Truman, J. Math. Phys., 43, 5161–5171 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. E. Nelson, J. Math. Phys., 5, 332–343 (1964).

    Article  ADS  MATH  Google Scholar 

  6. N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. 1, Fourier Analysis and Semigroups, Imperial College Press, London (2001).

    Google Scholar 

  7. V. P. Maslov, Complex Markov Chains and the Feynman Path Integral for Nonlinear Equations [in Russian], Nauka, Moscow (1976).

    MATH  Google Scholar 

  8. P. Cartier and C. De Witt-Morett, Functional Integration: Action and Symmetries, Cambridge University Press, Cambridge (2006).

    Google Scholar 

  9. O. G. Smolyanov and E. T. Shavgulidze, Path Integrals [in Russian], Moscow State Univ., Moscow (1990).

    Google Scholar 

  10. S. A. Albeverio, R. J. Høegh-Krohn, and S. Mazzucchi, Mathematical Theory of Feynman Path Integrals (Lect. Notes Math., Vol. 523), Springer, Berlin (2008).

    Book  MATH  Google Scholar 

  11. M. Kac, Probability and Related Topics in Physical Sciences, Amer. Math. Soc., Providence, R. I. (1959).

    MATH  Google Scholar 

  12. A. D. Venttsel’ and M. I. Freidlin, Fluctuations in Dynamical Systems Subject to Small Random Perturbations [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  13. E. B. Dynkin, Markov Processes [in Russian], Fizmatlit, Moscow (1963).

    MATH  Google Scholar 

  14. Yu. L. Daletskij and S. V. Fomin, Measures and Differential Equations in Infinite-Dimensional Spaces [in Russian], Nauka, Moscow (1983); English transl. (Math. and Its Appl. Soviet Series, Vol. 76), Kluwer, Dordrecht (1991).

    MATH  Google Scholar 

  15. F. A. Berezin, Theor. Math. Phys., 6, 141–155 (1971).

    Article  MathSciNet  Google Scholar 

  16. H. von Waizsaecker and O. G. Smolyanov, Dokl. Math., 79, 335–338 (2009).

    Article  MathSciNet  Google Scholar 

  17. M. Gadella and O. G. Smolyanov, Dokl. Math., 77, 120–123 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ya. A. Butko, O. G. Smolyanov, and R. L. Schilling, Dokl. Math., 82, 679–683 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. V. G. Sakbaev and O. G. Smolyanov, Dokl. Math., 82, 630–633 (2010).

    Article  MATH  Google Scholar 

  20. D. S. Tolstyga, Russian J. Math. Phys., 18, 122–131 (2011).

    Article  MathSciNet  ADS  Google Scholar 

  21. Yu. N. Orlov, Foundations of Quantization of Degenerate Dynamical Systems [in Russian], Moscow Inst. Phys. Tech., Moscow (2004).

    Google Scholar 

  22. Ya. A. Butko, O. G. Smolyanov, Contemp. Probl. Math. Mech., 6, 61–75 (2011).

    Google Scholar 

  23. Ya. A. Butko, M. Grothaus, and O. G. Smolyanov, Dokl. Math., 78, 590–595 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. F. A. Berezin, The Method of Second Quantization [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Orlov.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 172, No. 1, pp. 122–137, July, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlov, Y.N., Sakbaev, V.Z. & Smolyanov, O.G. Rate of convergence of Feynman approximations of semigroups generated by the oscillator Hamiltonian. Theor Math Phys 172, 987–1000 (2012). https://doi.org/10.1007/s11232-012-0090-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-012-0090-x

Keywords

Navigation