Skip to main content
Log in

Constitutive principles versus comprehensibility conditions in post-Kantian physics

  • Published:
Synthese Aims and scope Submit manuscript

Clearly, science, whose aim is to comprehend nature, must assume the comprehensibility of nature and must reason and investigate according to this presupposition until incontrovertible facts may force it to recognize its limits.

(Helmholtz 1847, p. 4)

Abstract

The relativistic revolution led to varieties of neo-Kantianism in which constitutive principles define the object of scientific knowledge in a domain-dependent and historically mutable manner. These principles are a priori insofar as they are necessary premises for the formulation of empirical laws in a given domain, but they lack the self-evidence of Kant’s a priori and they cannot be identified without prior knowledge of the theory they purport to frame. In contrast, the rationalist endeavors of a few masters of theoretical physics have led to comprehensibility conditions that are easily admitted in a given domain and yet suffice to generate the theory of this domain. The purpose of this essay is to compare these two kinds of relativized a priori, to discuss the nature of the comprehensibility conditions, and to demonstrate their effectiveness in a modular conception of physical theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Cf. Coffa (1991), Friedman (2000), Ryckman (2005), Mittelstaedt and Weingartner (2005), Bitbol et al. (2009) and Stump (2015).

  2. On the second approach, see Darrigol (2014, 2015).

  3. Cassirer (1921), Reichenbach (1920) and Friedman (2001, 2012). As Friedman was first to abundantly use the phrase "relativized a priori," I often use it to label his own version of neo-Kantianism even though other versions are also concerned with a historically evolving a priori.

  4. Darrigol (2008). As mentioned ibid. pp. 200, 203n, 216–217, this view has similarities with the structuralist variety of the semantic view, initiated by Joseph Sneed in the 1970s. See also Torretti (1980, Chap. 3).

  5. Cf. Krüger (1994) and Darrigol (1994).

  6. Darrigol (2014).

  7. Kant (1781).

  8. Kant (1783, 1786). Cf. Friedman (1983, 2013).

  9. Kant (1790). Cf. Friedman (1991, 1992).

  10. This is indeed the judgment expressed in Cassirer (1910).

  11. Cf. Stein (1977), DiSalle (2006) and Hyder (2009).

  12. Cf. Paty (1993, pp. 250–363), Heinzmann (2001) and Príncipe (2012).

  13. Cohen (1902). Cf. Denton and Poma (1997) and Edgar (2005).

  14. Cassirer (1910, p. 218) and Russell (1903). Cf. Friedman (2000, Chap. 6), Ryckman (2005, pp. 39–46) and Heis (2007, 2014).

  15. Cassirer (1910, pp. 402–405).

  16. Cassirer (1910, pp. 186–191, 216 (ether), 241 (space and time)).

  17. Cassirer (1910, p. 352; also p. 368): "Jedes spätere Glied der Reihe [der Gesichtspunkte] hängt mit den früheren an deren Stelle es sich setzt, notwendig zusammen, sofern es die Antwort auf eine Frage geben will, die in ihnen latent ist. Wir stehen hier vor einem ständig sich erneuernden Prozeß, der nur relative Haltpunkte kennt: und diese Haltpunkte sind es, die uns den jeweiligen Begriff der ‘Objektivät' definieren."

  18. Cassirer (1910, p. 357): "Apriorisch können nur jene letzten logischen Invarianten heißen, die jeder Bestimmung naturgesetzlicher Zusammenhänge überhaupt zugrunde liegen"; p. 427 (projektierte Einheit) pp. 248, 351–355, 362–363 (on successive forms). The regulative character of the convergence of the forms of knowledge toward a well-defined limit is asserted in Cassirer (1921, p. 24).

  19. Cassirer (1910, p. 355).

  20. Cassirer (1910, pp. 356–358, 411 (logische Invariante), p. 357 (citation)).

  21. Cassirer (1910, p. 243) nonetheless referred to Poincaré's discussion of the measurement of time. Paul Natorp, another Marburg neo-Kantian, did discuss Einstein's theory in the same year 1910: cf. Spoelstra (2014, p. 43).

  22. Cassirer (1921, pp. 85, 88, 58, 24). Cf. Ryckman (2005, pp. 39–46) and Spoelstra (2014, Chap. 2).

  23. All page numbers are from Cassirer (1921). Cassirer attempts to give finer distinctions between various principles were not too felicitous: see, e.g., his distinction between the "material" principle of the constancy of the velocity of light and the "formal" principle of relativity, and his assertion that the former principle becomes invalid in general relativity (Cassirer 1921, p. 38).

  24. Cassirer (1921, p. 88 (English in Cassirer (1923, pp. 420–421)).

  25. Cassirer (1937). Cf. Ryckman (2015, 2018) and Stamenkovic (2015).

  26. Cassirer (1921, p. 42).

  27. Reichenbach (1920). Cf. Ryckman (2005, pp. 2839) and Padovani (2011).

  28. Schlick (1918).

  29. Reichenbach (1920, p. 40): "Wir konstatieren die Merkwürdigkeit, dass die definierte Seite die Einzeldinge der undefinierten Seite erst bestimmt, und dass umgekehrt die undefinierte Seite die Ordnung der definierten Seite vorschreibt"; p. 43: "Eindeutigkeit heißt für die Erkenntiszuordnung, daß eine physikalische Zustandsgröße bei ihrer Bestimmung aus verschiedenen Erfahrungsdaten durch dieselbe Messungszahl wiedergegeben ist."

  30. Reichenbach (1920, pp. 51–52).

  31. Reichenbach (1920, p. 86): "So ist es offenbar nicht in dem Charakter der Wirklichkeit begründet, daß wir sie durch Koordinaten beschreiben, sondern dies ist die subjektive Form, die es unserer Vernunft erst möglich macht, die Beschreibung zu vollziehen."

  32. Reichenbach (1920, p. 66). Cf. Ryckman (2005, pp. 33–6).

  33. Reichenbach, ref. 22, p. 88: "Das Verfahren, durch Transformationsformeln den objektiven Sinn einer physikalischen Aussage von der Subjektiven Form der Beschreibung zu eliminieren, ist, indem es indirekt diese subjektive Form charakterisiert, an Stelle der Kantischen Analyse der Vernunft getreten. Es ist allerdings ein sehr viel komplizierteres Verfahren als Kants Versuch einer direkten Formulierung, und die Kantische Kategorientafel muß neben dem modernen invarianten-theoretischen Verfahren primitiv Erscheinen."

  34. Cf. Coffa (1991, pp. 201–206) and Spoelstra (2014, pp. 82–83).

  35. Cassirer to Reichenbach, 7 July 1820, doc. 285, DVD in Cassirer (2009): "Unsere Gesichtspunkte sind verwandt – decken sich aber, so viel ich bis jetzt ersehen kann, gerade nicht mit Bezug auf die Bestimmung des Begriffs der Apriorität und mit Bezug auf die Interpretation der Kantischen Lehre, die Sie meiner Ansicht nach zu psychologisch sehen u. daher in einen zu scharfen Gegensatz zu ihrer ,wissenschaftsanalytischen’ Betrachtung rücken. Der streng ,transzendental’ verstandene Kant steht dieser Auffassung glaube ich viel näher, als es bei Ihnen erscheint."

  36. Friedman (2001, pp. 64–65 (on Cassirer), 32 (on Carnap), 19–21 (on Kuhn), 40–41 (anti-Quine); pp. 20, 37–40, 76–80 (constitutive principles)).

  37. Friedman (2001, pp. 46, 63–64, 66).

  38. This understanding (Friedman 2001, p. 79) is contrary to common usage, according to which the equivalence principle and the geodetic principle are two separate principles.

  39. Friedman (2001, pp. 77 (mechanics), 79–80 (relativity)). Samaroo (2015) refuses to regard the mathematical background as constitutive and retains only Friedman's "coordinating principles." In his view, a properly Kantian constitutive principle constitutes or interprets a theoretical concept by expressing a criterion for its application. In Friedman's view, the mathematical background is constitutive insofar as it is also needed to express the properly empirical laws.

  40. Friedman (2001, pp. 86–91). On Poincaré and principles, cf. Príncipe (2012).

  41. This statement contradicts the now common view that the three laws of Newtonian mechanics together define the way we can apply mechanical concepts and therefore cannot be tested independently of a given law of force (such as the law of universal gravitation). As will appear in Sect. 2 of this article, this view is not necessary because empirically established modules (geometry, kinematics, statics, etc.) may permit the testing of individual laws of a theory without implying its entire structure.

  42. Friedman (2009).

  43. Ryckman (2010).

  44. As was mentioned above, in most circumstances Friedman's "equivalence principle" truly is the geodetic principle.

  45. Tanona (2010), Ryckman (2010), Uebel (2012), Ferrari (2012) and Everett (2014, 2015).

  46. Friedman (2012, p. 48): "I now think … that this notion of distinctively constitutive principles is too thin, in so far as it does not attribute to what is given in sensibility a sufficiently rich and sufficiently independent a priori structure."

  47. Friedman (2012, pp. 48–49).

  48. Friedman (2010, p. 698).

  49. On the status of the second law, cf. Darrigol (2014, pp. 23, 43–44). Again (see note 41), the second law of mechanics becomes an empirical law in a proper modular framework. Newton himself states that the three laws of motion (as the law of gravitation) are inductive generalizations (cf. Darrigol 2014, pp. 5–6). This view is not incompatible with the laws of motion being a precondition for formulating the law of universal gravitation.

  50. Goethe to Zelter, cited in Cassirer (1921, pp. 30–31): "Die größte Kunst in Lehr- und Weltleben besteht darin, das Problem in ein Postulat zu verwandeln, damit kommt man durch."

  51. Friedman (2001, p. 23) for the light postulate and the needed meta-framework. A similar strategy could be used to distinguish between Einstein's general relativity and the equivalent flat-spacetime version by Suraj Gupta and Richard Feynman.

  52. On the Hertzian background of Einstein's reflections, cf. Darrigol (1996); for a criticism of Friedman's account of the equivalence principle, cf. Everett (2015).

  53. According to this geodetic principle, point-like particles follow the geodesics of space–time in the absence of non-gravitational interactions.

  54. Cf. Darrigol (2008).

  55. Cf. Darrigol (2008). This section on modules is based on Darrigol (2015).

  56. Jürgen Renn's notion of "integration of knowledge" through "mental models" implicitly involves such anticipation of modular structure: see Büttner et al. (2003).

  57. Cf. Buchwald (1985) and Siegel (1991).

  58. On Bohr's views, cf. Chevalley (1985, 1991).

  59. On Boltzmann's pluralism, cf. de Courtenay (1999).

  60. Cf. Smith and Wise (1989).

  61. Galison (1997, Chap. 9).

  62. Cf. Wise (1979) and Cat (2001).

  63. Reichenbach (1920, p. 67) and Cassirer (1910, p. 355).

  64. Darrigol (2008, pp. 215–222).

  65. Typically, comprehensibility arguments only determine theoretical frameworks in the sense given at the beginning of this essay. Some additional empirical laws are needed to apply these frameworks to specific concrete systems. In conformity with the physicists' practice, in the following I use "theory" instead of "theoretical framework."

  66. The two following subsections are taken from Darrigol (2015).

  67. Helmholtz (1868). The following is a very free reconstruction of Helmholtz's argument.

  68. I use "locally" and "local" to indicate approximate validity in small domains of space, not in the modern mathematical sense.

  69. See Darrigol (2014, Chap. 4).

  70. Lagrange (1798). In a concrete connected system on earth, the \( {\mathbf{F}}_{\alpha } \)'s would include the weight of the various components of the system, so that Lagrange's construction can only be an imaginary one (the more so because W itself is subjected to gravitation).

  71. See Darrigol (2014).

  72. On the weaknesses of the Kuhnian picture of scientific change, cf. Martins (1972, pp. 20, 24–25, 35) and Galison 1997, (pp. 781–802).

  73. Cf. Mittelstaedt (2011, p. x): "stepwise reduction of prejudices."

References

  • Bitbol, M., Kerszberg, P., & Petitot, J. (2009). Constituting objectivity: Transcendental perspectives on modern physics. Berlin: Springer.

    Google Scholar 

  • Buchwald, J. (1985). From Maxwell to microphysics: Aspects of electromagnetic theory in the last quarter of the nineteenth century. Chicago: University of Chicago Press.

    Google Scholar 

  • Büttner, J., Renn, J., & Schemmel, M. (2003). Exploring the limits of classical physics: Planck, Einstein, and the structure of a scientific revolution. Studies in History and Philosophy of Modern Physics, 34, 37–59.

    Google Scholar 

  • Cassirer, E. (1910). Substanzbegriff und Funktionsbegriff: Untersuchungen über die Grundfragen der Erkenntniskritik. Berlin: Bruno Cassirer.

    Google Scholar 

  • Cassirer, E. (1921). Zur Einstein’schen Relativitätstheorie. Erkenntnistheoretische Betrachtungen. Berlin: Bruno Cassirer.

    Google Scholar 

  • Cassirer, E. (1923). Substance and function, and Einstein’s theory of relativity [translation of Cassirer 1910, 1921 by William Curtis Swabey and Mary Collins Swabey]. Chicago: Open Court.

  • Cassirer, E. (1937). Determinismus und Indeterminismus in der modernen Physik: historische und systematische Studien zum Kausalproblem. Vols. 42–43 of Göteborgs Högskolas årsskrift. Göteborg: Wettergren & Kerbers.

  • Cassirer, E. (2009). Ausgewählter wissenschaftlicher Briefwechsel. Hamburg: Meiner.

    Google Scholar 

  • Cat, J. (2001). On understanding: Maxwell on the methods of illustration and scientific metaphor. Studies in History and Philosophy of Modern Physics, 32, 395–441.

    Google Scholar 

  • Chevalley, C. (1985). Complémentarité et langage dans l’interprétation de Copenhague. Revue d’histoire des sciences et des techniques, 38, 251–292.

    Google Scholar 

  • Chevalley, C. (1991). Le dessin et la couleur Introduction to Niels Bohr. In N. Bohr (Ed.), Physique atomique et connaissance humaine (pp. 19–140). Paris: Flammarion.

    Google Scholar 

  • Coffa, J. A. (1991). The semantic tradition from Kant to Carnap: To the Vienna station. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cohen, H. (1902). System der Philosophie. Erster Theil: Logik der reinen Erkenntnis. Berlin: Bruno Cassirer.

    Google Scholar 

  • Darrigol, O. (1994). Helmholtz’s electrodynamics and the comprehensibility of nature. In L. Krüger (Ed.), Universalgenie Helmholtz. Rückblick nach 100 Jahren (pp. 216–242). Berlin: Akademie Verlag.

    Google Scholar 

  • Darrigol, O. (1996). The electrodynamic origins of relativity theory. Historical Studies in the Physical and Biological Sciences, 26, 241–312.

    Google Scholar 

  • Darrigol, O. (2008). The modular structure of physical theories. Synthese, 162, 195–223.

    Google Scholar 

  • Darrigol, O. (2014). Physics and necessity: Rationalist pursuits from the Cartesian past to the quantum present. Oxford: Oxford University Press.

    Google Scholar 

  • Darrigol, O. (2015). Why some physical theories should never die. In J. Príncipe (Ed.), Évora studies in the philosophy and history of science. In memoriam Hermínio Martins (pp. 319–368). Casal de Cambra: Caleidoscópio.

    Google Scholar 

  • de Courtenay, N. (1999). Science et philosophie de Ludwig Boltzmann. La liberté des images par les signes. Thèse de doctorat, Université de Paris 4.

  • Denton, J., & Poma, A. (1997). The critical philosophy of Hermann Cohen. Albany: State University of New York Press.

    Google Scholar 

  • DiSalle, R. (2006). Understanding space–time: The philosophical development of physics from Newton to Einstein. Cambridge: Cambridge University Press.

    Google Scholar 

  • Domski, M., & Dickson, M. (Eds.). (2010). Discourse on a new method: Reinvigorating the marriage of history and philosophy of Science. Chicago: Open Court.

    Google Scholar 

  • Edgar, S. (2005). Hermann Cohen. In: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2015 Edition), https://plato.stanford.edu/archives/fall2015/entries/cohen/. Accessed 22 Sept 2018.

  • Everett, J. J. (2014). Constitutive or regulative principles? The Kantian legacy for contemporary philosophy of science. PhD dissertation. University College, London.

  • Everett, J. J. (2015). The constitutive a priori and the distinction between mathematical and physical possibility. Studies in History and Philosophy of Modern Physics, 52, 139–152.

    Google Scholar 

  • Ferrari, M. (2012). Between Cassirer and Kuhn. Some remarks on Friedman’s relativized a priori. Studies in History and Philosophy of Science, 43, 18–26.

    Google Scholar 

  • Friedman, M. (1983). Foundations of spacetime theories: Relativistic physics and philosophy of science. Princeton: Princeton University Press.

    Google Scholar 

  • Friedman, M. (1991). Regulative and constitutive. Southern Journal of Philosophy, 30(supt.), 73–102.

    Google Scholar 

  • Friedman, M. (1992). Kant and the exact sciences. Cambridge: Harvard University Press.

    Google Scholar 

  • Friedman, M. (2000). A parting of the ways: Carnap, Cassirer, and Heidegger. Chicago: Open Court.

    Google Scholar 

  • Friedman, M. (2001). Dynamics of reason: The 1999 Kant lectures at Stanford University. Stanford: Stanford University Press.

    Google Scholar 

  • Friedman, M. (2009). Einstein, Kant, and the relativized a priori. In M. Bitbol, P. Kerszberg, & J. Petitot (Eds.), Constituting objectivity: Transcendental perspectives on modern physics (pp. 253–267). Berlin: Springer.

    Google Scholar 

  • Friedman, M. (2010). Synthetic history reconsidered. In Domski and Dickson 2010, pp. 569–613.

    Google Scholar 

  • Friedman, M. (2012). Reconsidering the dynamics of reason: Response to Ferrari, Mormann, Nordmann, and Uebel. Studies in History and Philosophy of Science, 43, 47–53.

    Google Scholar 

  • Friedman, M. (2013). Kant’s construction of nature: A reading of the Metaphysical foundations of natural science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Galison, P. (1997). Image and logic: A material culture of microphysics. Chicago: Chicago University Press.

    Google Scholar 

  • Heinzmann, G. (2001). The foundations of geometry and the concept of motion: Helmholtz and Poincaré. Science in Context, 14, 457–470.

    Google Scholar 

  • Heis, J. (2007). The fact of modern mathematics: Geometry, logic, and concept formation in Kant and Cassirer. PhD disseriation, University of Pittsburgh.

  • Heis, J. (2014). Ernst Cassirer’s Substanzbegriff und Funktionsbegriff. Hopos, 4, 240–270.

    Google Scholar 

  • Helmholtz, H. (1847). Über die Erhaltung der Kraft, eine physikalische Abhandlung. Berlin: Reimer.

    Google Scholar 

  • Helmholtz, H. (1868). Über die Thatsachen, die der Geometrie zum Grunde legen. Königliche Gesellschaft der Wissenschaften von der Georg-August-Universität zu Göttingen. Nachrichten, 1868, 193–221.

    Google Scholar 

  • Hyder, D. (2009). The determinate world: Kant and Helmholtz on the physical meaning of geometry. Berlin: De Gruyter.

    Google Scholar 

  • Kant, I. (1781). Critik der reinen Vernunft. Riga: Hartknoch.

    Google Scholar 

  • Kant, I. (1783). Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. Riga: Hartknoch.

    Google Scholar 

  • Kant, I. (1786). Metaphysische Anfangsgründe der Naturwissenschaft. Riga: Hartknoch.

    Google Scholar 

  • Kant, I. (1790). Critik der Urtheilskraft. Berlin: Lagarde and Frederick.

    Google Scholar 

  • Krüger, L. (1994). Helmholtz über die Begreiflichkeit der Natur. In L. Krüger (Ed.), Universalgenie Helmholtz. Rückblick nach 100 Jahren (pp. 201–215). Berlin: Akademie Verlag.

    Google Scholar 

  • Lagrange, J. L. (1798). Sur le principe des vitesses virtuelles. Journal de l’École Polytechnique, 2 (cahier 5), 115–118.

    Google Scholar 

  • Martins, H. (1972). The Kuhnian ‘revolution’ and its implications for sociology. In A. Hanson, T. Rossiter, & S. Rokkan (Eds.), Imagination and precision in the social sciences: Essays in honor of Peter Nettl (pp. 13–58). London: Faber.

    Google Scholar 

  • Mittelstaedt, P. (2011). Rational reconstructions of modern physics. Heidelberg: Springer.

    Google Scholar 

  • Mittelstaedt, P., & Weingartner, P. (2005). Laws of nature. Berlin: Springer.

    Google Scholar 

  • Padovani, F. (2011). Relativizing the relativized a priori: Reichenbach’s axioms of coordination divided. Synthese, 181, 41–62.

    Google Scholar 

  • Paty, M. (1993). Einstein philosophe: la physique comme pratique philosophique. Paris: Presse Universitaires de France.

    Google Scholar 

  • Príncipe, J. S. (2012). Sources et nature de la philosophie de la physique d’Henri Poincaré. Philosophia scientiae, 16, 197–222.

    Google Scholar 

  • Reichenbach, H. (1920). Relativitätstheorie und Erkenntnis apriori. Berlin: Springer.

    Google Scholar 

  • Russell, B. (1903). The principles of mathematics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ryckman, T. (2005). The reign of relativity: Philosophy in physics 1915–1925. Oxford: Oxford University Press.

    Google Scholar 

  • Ryckman, T. (2010) The “relativized a priori”: An appreciation and a critique. In Domski and Dickson 2010, pp. 455–470.

  • Ryckman, T. (2015). A retrospective view of Determinism and indeterminism in modern physics. In J. Tyler Friedman & S. Luft (Eds.), The philosophy of Ernst Cassirer: A novel assessment (pp. 65–102). Berlin: De Gruyter.

    Google Scholar 

  • Ryckman, T. (2018). Cassirer and Dirac on the symbolic method in quantum mechanics: A confluence of opposites. Journal for the History of Analytical Philosophy, 6, 213–243.

    Google Scholar 

  • Samaroo, R. (2015). Friedman’s thesis. Studies in History and Philosophy of Modern Physics, 52, 129–138.

    Google Scholar 

  • Schlick, M. (1918). Allgemeine Erkenntnislehre. Berlin: Springer.

    Google Scholar 

  • Siegel, D. (1991). Innovation in Maxwell’s electromagnetic theory: Molecular vortices, displacement current, and light. Cambridge: Cambridge University Press.

    Google Scholar 

  • Smith, C., & Wise, N. (1989). Energy and empire: A biographical study of Lord Kelvin. Cambridge: Cambridge University Press.

    Google Scholar 

  • Spoelstra, O. (2014). Ernst Cassirer and the theories of relativity. MSc thesis. Utrecht University.

  • Stamenkovic, P. (2015). La méthode transcendentale chez Kant et Cassirer: application à la théorie quantique. Thèse de doctorat, Université de Paris 7 Denis Diderot.

  • Stein, H. (1977). Some philosophical prehistory of general relativity. In J. Earman, C. Glymour, & J. Stachel (Eds.), Foundations of space–time theories. Minnesota studies in the philosophy of science (Vol. 8, pp. 3–49). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Stump, D. (2015). Conceptual change and the philosophy of science: Alternative interpretations of the a priori. New York: Routledge.

    Google Scholar 

  • Tanona, S. (2010). Theory, coordination, and empirical meaning in modern physics. In Domski and Dickson 2010, pp. 423–454.

  • Torretti, R. (1980). Creative understanding: Philosophical reflections on physics. Chicago: University of Chicago Press.

    Google Scholar 

  • Uebel, T. (2012). De-synthesizing the relative a priori. Studies in History and Philosophy of Science, 43, 7–17.

    Google Scholar 

  • Wise, N. (1979). The mutual embrace of electricity and magnetism. Science, 203, 1310–1318.

    Google Scholar 

Download references

Acknowledgements

I thank João Príncipe and Tom Ryckman for instructive conversations, and two anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Darrigol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darrigol, O. Constitutive principles versus comprehensibility conditions in post-Kantian physics. Synthese 197, 4571–4616 (2020). https://doi.org/10.1007/s11229-018-01948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-018-01948-2

Keywords

Navigation