Skip to main content
Log in

Talking at cross-purposes: how Einstein and the logical empiricists never agreed on what they were disagreeing about

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

By inserting the dialogue between Einstein, Schlick and Reichenbach into a wider network of debates about the epistemology of geometry, this paper shows that not only did Einstein and Logical Empiricists come to disagree about the role, principled or provisional, played by rods and clocks in General Relativity, but also that in their lifelong interchange, they never clearly identified the problem they were discussing. Einstein’s reflections on geometry can be understood only in the context of his ”measuring rod objection” against Weyl. On the contrary, Logical Empiricists, though carefully analyzing the Einstein–Weyl debate, tried to interpret Einstein’s epistemology of geometry as a continuation of the Helmholtz–Poincaré debate by other means. The origin of the misunderstanding, it is argued, should be found in the failed appreciation of the difference between a “Helmholtzian” and a “Riemannian” tradition. The epistemological problems raised by General Relativity are extraneous to the first tradition and can only be understood in the context of the latter, the philosophical significance of which, however, still needs to be fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Henceforth I will provide the original German of those passages that I translated myself.

  2. Einstein refers to a private conversation.

  3. Einstein’s 1910–1911 lecture notes on Electricity and Magnetism testifies his early commitment to this epistemological ideal: a physical theory, Einstein remarks, is “a conceptual system whose individual parts do not correspond immediately to experiential facts”, but it “is true or false, i.e., corresponding or not corresponding to experience, onlyas a whole” (CPAE 3, Doc. 11, 325; cf. Howard 1994, 91f.)

  4. As Jürgen Ehlers has pointed out, “[a]part from Albert Einstein nobody has contributed more to the conceptual clarification of the general theory of relativity than Hermann Weyl” (Ehlers 1988a, 84f.). Needless to say, no attempt is made to offer an exhaustive overview of Weyl’s contributions to the mathematical and philosophical foundations of spacetime theories. One may consult (Bell and Korté 2011, §§4.1, 4.3, 4.4) for a recent detailed account and further bibliographic references.

  5. The reference is to Reichenbach (1920) and Freundlich (1920).

  6. In 1927, the International Conference on Weights and Measures redefined the meter in terms of a red cadmium spectral line (1 m = 1,553,164.13 times the wavelength of the 6436.4696 Å cadmium red line).

References

  • Bell, J. L., & Korté, H. (2011). Hermann Weyl. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Spring 2011 ed.). http://plato.standford.edu/archieves/spr2011/entries/weyl.

  • Beller, M. (1999). Quantum dialogue: The making of a revolution. Chicago: University of Chicago Press.

  • Born, M. (1909). Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips. Annalen der Physik, 11, 1–56.

    Google Scholar 

  • Born, M. (1910). Über die Definition des starren Körpers in der Kinematik des Relativitätsprinzips. Physikalische Zeitschrift, 11, 233–234.

    Google Scholar 

  • Carrier, M. (1990). Constructing or completing physical geometry? On the relation between theory and evidence in accounts of space–time structure. Philosophy of Science, 57(3), 369–394.

    Article  Google Scholar 

  • Cassirer, E. (1938). Le concept de groupe et la théorie de la perception. Journal de Psychologie, 35, 368–414.

    Google Scholar 

  • Cassirer, E. (1944). The concept of group and the theory of perception. Philosophy and Phenomenological Research, 5(1), 1–36.

    Article  Google Scholar 

  • Cassirer, E. (1950). The problem of knowledge: Philosophy, science, and history since Hegel. New Haven: Yale University Press.

  • Christoffel, E. B. (1869). Ueber die Transformation der homogenen Differentialausdrücke zweiten Grades. Journal für die reine und angewandte Mathematik, 70, 46–70 now in Christoffel, 1910, Vol. I, 352–377, 378–382.

  • Christoffel, E. B. (1910). Gesammelte mathematische Abhandlungen Volume L Maurer. Leipzig: Teubner.

    Google Scholar 

  • Coffa, A. J. (1979). Elective affinities: Weyl and Reichenbach. In W. C. Salmon (Ed.), Hans Reichenbach: Logical empirist. Dordrecht: Kluwer.

    Google Scholar 

  • Coleman, R. A., & Korté, H. (1981). Spacetime G-structures and their prolongations. Journal of Mathematical Physics, 22(11), 2598–2611.

    Article  Google Scholar 

  • Coleman, R. A., Korté, H. (1982). The status and meaning of the laws of inertia. PSA: Proceedings of the Biennial meeting of the philosophy of science association, Volume 1: Contributed Papers, pp. 257–274, Philadelphia.

  • Coleman, R. A., & Korté, H. (1984). Constraints on the nature of inertial motion arising from the universality of free fall and the conformal causal structure of space–time. Journal of Mathematical Physics, 25, 3513–3527.

    Article  Google Scholar 

  • Coleman, R. A., & Korté, H. (1995). A new semantics for the epistemology of geometry I: Modeling spacetime structure. Erkenntnis, 42, 141–160.

    Google Scholar 

  • Coleman, R. A., & Korté, H. (1999). Geometry and forces in relativistic and pre-relativistic theories. Foundations of Physics, 12(2), 147–163.

    Google Scholar 

  • Coleman, R. A., & Korté, H. (2001). Hennann Weyl: Mathematician, Physicist, Philosopher. In E. Scholz, R. A. Coleman, & H. Korté (Eds.), Hermann Weyls Raum - Zeit - Materie and a general introduction to his scientific work, DMV-Seminar; 30. Basel: Birkhäuser.

  • CPAE: Einstein A. (1996–). The collected papers of Albert Einstein. Princeton: Princeton University Press.

  • D’Agostino, S. (2000). A history of the ideas of theoretical physics: Essays on the nineteenth and twentieth century physics. Boston studies in the philosophy of science, Vol. 213. Dordrecht: Kluwer.

  • Darrigol, O. (2007). A Helmholtzian approach to space and time. Studies in History and Philosophy of Science Part A, 38(3), 528–542.

    Article  Google Scholar 

  • DiSalle, R. (2002). Conventionalism and modern physics. A re-assessment. Noûs, 36(2), 169–200.

    Article  Google Scholar 

  • Earman, J., & Glymour, C. (1980). The gravitational red shift as a test of general relativity: History and analysis. Studies in History and Philosophy of Science Part A, 11(3), 175–214.

    Article  Google Scholar 

  • Eddington, A. S. (1939). The philosophy of physical science: Tarner Lectures, 1938. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ehlers, J. (1988a). Einführung in die Raum-Zeit-Struktur mittels Lichtstrahlen und Teilchen. In J. Andretsch et al. (Eds.), Philosophie und Physik der Raum-Zeit (pp. 145–162). Mannheim: B.I.-Wissenschaftsverlag.

  • Ehlers, J. (1988b). Hermann Weyl’s contributions to the general theory of relativity. In W. H. Deppert (Ed.), Exact sciences and their philosophical foundations: Vorträge des Internationalen Hermann-Weyl-Kongresses, Kiel 1985 = Exakte Wissenschaften und ihre philosophische Grundlegung. Frankfurt am Main: Lang.

  • Ehlers, J., Pirani, F. A. E., & Schild, A. (1972). The geometry of free fall and light propagation. In L. O’Raifeartaigh (Ed.), General relativity. Papers in honour of J.L. Synge. Oxford: Clarendon Press.

  • Ehrenfest, P. (1909). Gleichförmige Rotation starrer Körper und Relativitätstheorie. Physikalische Zeitschrift, 10, 918.

    Google Scholar 

  • Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891–921 (now in CPAE 2, Doc. 23).

  • Einstein, A. (1907). Relativitätsprinzip und die aus demselben gezogenen Folgerungen. Jahrbuch der Radioaktivität, 4, 411–462 (now in CPAE 2, Doc. 47).

  • Einstein, A. (1911). Die Relativitäts-Theorie. Naturforschende Gesellschaft, Zürich, Vierteljahresschrift, 56, 1–14 (now in CPAE 3, Doc. 17).

  • Einstein, A. (1912). Lichtgeschwindigkeit und Statik des Gravitationsfeldes. Annalen der Physik, 38, 355–369 (now in CPAE 4, Doc. 3).

  • Einstein, A. (1914). Die formale Grundlage der allgemeinen Relativitätstheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 1030–1085). (now in CPAE 6, Doc. 9).

  • Einstein, A. (1915a). Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 831–839). (now in CPAE 6, Doc. 24).

  • Einstein, A. (1915b). Feldgleichungen der Gravitation. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 844–847). (now in CPAE 6, Doc. 25).

  • Einstein, A. (1915c). Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 315.

  • Einstein, A. (1915d). Zur allgemeinen Relativitätstheorie. In Preussische Akademie der Wissenschaften, Sitzungsberichte (pp. 778–786, 799–801). Berlin: (now in CPAE 6, Doc. 21 and 22).

  • Einstein, A. (1916). Die Grundlage der allgemeinen Relativitätstheorie. Annalen der Physik, 49, 769–822 (now in CPAE 6, Doc 30).

  • Einstein, A. (1918). Nachtrag zu H. Weyl, Gravitation und Elektrizität. In Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 478–480), Berlin.

  • Einstein, A. (1920). Äther und Relativitätstheorie: Rede gehalten am 5. Mai 1920 an der Reichs-Universität zu Leiden. Berlin: Springer (now in CPAE 7, Doc. 38).

  • Einstein, A. (1921). Geometrie und Erfahrung. Erweiterte Fassung des Festvortrages gehalten an der Preussischen Akademie der Wissenschaften zu Berlin am 27 Januar 1921. Berlin: Springer (now in CPAE 7, Doc. 52).

  • Einstein, A. (1923). Grundgedanken und Probleme der Relativitätstheorie. Nobel prize lecture, delivered before the Nordische Naturforscherversammlung in Göteborg.

  • Einstein, A. (1924a). Über den Äther. Verhandlungen der Schweizerischen Naturforschenden Gesellschaft, 105, 85–93.

    Google Scholar 

  • Einstein, A. (1924). Review of Elsbach, 1924. Deutsche Literaturzeitung, 45, 1685–1692.

    Google Scholar 

  • Einstein, A. (1925). Nichteuklidische Geometrie und Physik. Die neue Rundschau, 36, 16–20.

    Google Scholar 

  • Einstein, A. (1926). Space–time. In Encyclopedia Britannica (13th ed., pp. 608–609). Chicago: Encyclopædia Britannica, Inc.

  • Einstein, A. (1930a). Das Raum-, Feld- und Ather-Problem in der Physik. Gesamtbericht, Zweite Weltkraftkonferenz, 19, 1–5.

    Google Scholar 

  • Einstein, A. (1930b). Das Raum-, Feld- und Ather-Problem in der Physik. Koralle, 5, 486–487.

    Google Scholar 

  • Einstein, A. (1930c). Raum, Äther und Feld in der Physik. Forum Philosophicum, 1, 173–180 (tr. the same volume, pp. 180–184).

  • Einstein, A. (1934). Das Raum-, Äther- und Feld-Problem der Physik. In C. Seelig (Ed.), Mein Weltbild. Amsterdam: Querido Verlag.

    Google Scholar 

  • Einstein, A. (1936). Physik und Realität [physics and reality]. Franklin Institute Journal, 221, 313–347; English translation (by J Picard), 349–382. Also reprinted from Zeitschrift für freie deutsche Forschung, 1 (1), 5–19 and (2), 1–14 (1938).

  • Einstein, A. (1949a). Autobiographical notes. In P. A. Schilpp (Ed.), Albert Einstein, Philosopher-Scientist. Evanston, IL: Library of Living Philosophers.

    Google Scholar 

  • Einstein, A. (1949b). Remarks concerning the essays brought together in this co-operative volume. In P. A. Schilpp (Ed.), Albert Einstein, Philosopher-Scientist. Evanston, IL: Library of Living Philosophers.

  • Einstein, A. (1954). Ideas and opinions. New York: Crown Publishers.

    Google Scholar 

  • Einstein, A., & Grossmann M. (1913). Entwurf einer verallgemeinerten Relativitätstheorie und eine Theorie der Gravitation I Physikalischer Teil von A Einstein II Mathematischer Teil von M. Grossmann. Zeitschrift für Mathematik und Physik, 62, 225–244, 245–261 (now in CPAE 4, 13).

  • Elsbach, A. C. (1924). Kant und Einstein : Untersuchungen über das Verhältnis der modernen Erkenntnistheorie zur Relativitätstheorie. Berlin: de Gruyter.

    Google Scholar 

  • Flamm, L. (1916). Beiträge zur Einstein’schen Gravitationstheorie. Physikalische Zeitschrift, 17, 448–454.

    Google Scholar 

  • Fogel B. (2008). Epistemology of a theory of Everything. Weyl, Einstein, and the unification of physics. Dissertation, University of Notre Dame, Notre Dame.

  • Frank, P. (1949). Einstein’s philosophy of science. Reviews of Modern Physics, 21(3), 349.

    Article  Google Scholar 

  • Freudenthal, H. (1956). Neuere Fassungen des Riemann-Helmholtz-Lieschen Raumproblems. Mathematische Zeitschrift, 63, 374–405.

    Article  Google Scholar 

  • Freundlich, E. (1920). Zu dem Aufsatze, “Die Physik als geometrische Notwendigkeit” von Arthur Haas (Naturwissenschaften 1920, Heft 3). Naturwissenschaften, 8, 234–235.

  • Friedman, M. (1995). Poincaré’s conventionalism and the logical positivists. Foundations of Science, 2, 299–314 (now in [Friedman 1999]).

  • Friedman M. (2002). Geometry as a branch of physics. Background and context for Eisnstein’s ‘Geometry and experience’. In D. Malament (Ed.), Reading natural philosophy. Chicago-La Salle (IL): Open Court.

  • Giedymin, J. (1982). On the origin and significance of Poincaré’s conventionalism. In J. Giedymin (Ed.), Science and convention. Essay on Henri Poincaré’s philosophy of science and the conventionalist tradition. Oxford: Pergamon Press.

  • Giovanelli, M. (2012a). The forgotten tradition: How the logical empiricists missed the philosophical significance of the work of Riemann, Christoffel and Ricci. Erkenntnis. doi:10.1007/s10670-012-9407-2

  • Giovanelli, M. (2012b). Erich Kretschmann as a protological-empiricist: Adventures and misadventures of the point-coincidence argument. Studies in the History and Philosophy of Modern Physics. doi:10.1016/j.shpsb.2012.11.004

  • Goenner, H. F. (2004). On the history of unified field theories. Living Reviews in Relativity, 7, 2.

    Google Scholar 

  • Grøn, Ø. (2004). Space geometry in a rotating reference frame: A historical appraisal. In G. Rizzi & M. Ruggiero (Eds.), Relativity in rotating frames. Dordrecht: Kluwer.

  • Grünbaum, A. (1963a). Carnap’s views on the foundations of geometry. In P. A. H. Schilpp (Ed.), The philosophy of Rudolf Carnap (Vol. 11). Lasalle, IL/Evanston, IL: Open Court/The Library of Living Philosophers.

  • Grünbaum, A. (1963b). Philosophical problems of space and time. Dordrecht: Reidel.

    Google Scholar 

  • Grünbaum, A. (1968a). Geometry and chronometry: In philosophical perspective. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Grünbaum, A. (1968b). Reply to Hilary Putnam’s ’An examination of Grnbaum’s philosophy of geometry’. In R. Cohen & M. Wartofsky (Eds.), Boston studies in the philosophy of science (Vol. 5, pp. 1–150). Dordrecht: Reidel.

  • Hecht, H., & Hoffmann, D. (1982). Die Berufung Hans Reichenbachs an die Berliner Universität. Deutsche Zeitschrift für Philosophie, 30, 651–662.

    Google Scholar 

  • Heinzmann, G. (2001). The foundations of geometry and the concept of motion: Helmholtz and Poincaré. Science in context, 14(3), 457–470.

    Article  Google Scholar 

  • Helmholtz, H. (1921). Schriften zur Erkenntnistheorie. Berlin: Springer.

    Google Scholar 

  • Hentschel, K. (1982). Zur Rolle Hans Reichenbachs in den Debatten um die Relativitätstheorie (mit der vollständigen Korrespondenz Reichenbach-Friedrich Adler im Anhang). Nachrichtenblatt der Deutschen Gesellschaft für Geschichte der Medizin, Naturwissenschaft & Technik, 3, 101–102.

  • Hentschel, K. (1986). Die Korrespondenz Einstein-Schlick: Zum Verhältnis der Physik zur Philosophie. Annals of Science, 43, 475–488.

    Article  Google Scholar 

  • Hentschel, K. (1994). Erwin Finlay Freundlich and testing Einstein’s theory of relativity. Archive for the History of the Exact Sciences, 47, 143–201.

    Article  Google Scholar 

  • Herglotz, G. (1910). Über den vom Standpunkt des Relativitätsprinzips aus als ”starr” zu bezeichnenden Körper. Annalen der Physik, 31, 393–415.

    Article  Google Scholar 

  • Hilbert, D. (1916/1917, Wintersemester). Die Grundlagen der Physik II. Lesesaal: Georg-August-Universitat Göttingen, Mathematisches Institut (now in Hilbert 2009, 162–307).

  • Hilbert, D. (2009). David Hilbert’s lectures on the foundations of physics 1915–1927. Berlin: Springer.

    Google Scholar 

  • Howard, D. (1984). Realism and conventionalism in Einstein’s philosophy of science: The Einstein-Schlick correspondence. Philosophia Naturalis, 21, 618–629.

    Google Scholar 

  • Howard, D. (1990). Einstein and Duhem. Synthese, 83, 363–384.

    Article  Google Scholar 

  • Howard D. (1994). Einstein, Kant and the origins of logical empiricism. In W. C. Salmon, & G. Wolters (Eds.), Logic, language, and the structure of scientific theories: Proceedings of the Carnap-Reichenbach Centennial, University of Konstanz, 21–24 May 1991. Pittsburgh, PA/Konstanz: University of Pittsburgh Press/Universitätsverlag Konstanz.

  • Howard, D. (2005). Einstein’s philosophy of science. In E. N. Zalta (Ed.), The Stanford Encyclopedia of philosophy (Summer 2010 ed.). http://plato.stanford.edu/archives/sum2010/entries/einsteinphilscience/.

  • Howard, D. (2009). Einstein and the development of twentieth-century philosophy of science. In M. Janssen & C. Lehner (Eds.), The Cambridge companion to Einstein. Cambridge: Cambridge University Press.

    Google Scholar 

  • Howard, D. (2010). “Let me briefly indicate why I do not find this standpoint natural”: Einstein, general relativity, and the contingent a priori. In Discourse on a new method: Reinvigorating the marriage of history and philosophy of science. La Salle, IL: Open Court.

  • Jackson, C. V. (1936). The red line of cadmium as a standard of wave-length. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 155(885), 407–419.

  • Kaluza, T. (1910). Zur Relativitätstheorie. Physikalische Zeitschrift, 11, 977–978.

    Google Scholar 

  • Kretschmann, E. (1917). Über den physikalischen Sinn der Relativitätspostulate. A. Einsteins neue und seine ursprüngliche Relativitätstheorie. Annalen der Physik, 53, 575–614.

    Google Scholar 

  • Kundt, W., & Hoffman, B. (1962). Determination of gravitational standard time. In Recent developments in general relativity. New York: Pergamon.

  • Laue, M. V. (1920). Theoretisches über neuere optische Beobachtungen zur Relativitätstheorie. Physikalische Zeitschrift, 21, 659–662.

    Google Scholar 

  • Levi-Civita, T., & Ricci-Curbastro, G. (1900). Méthodes de calcul différentiel absolu et leurs applications. Mathematische Annalen, 54, 125–201 (now in Ricci-Curbarstro 1956–57, I).

    Google Scholar 

  • Lie, S. (1886). Bemerkungen zu v. Helmholtz’ Arbeit über die Tatsachen, welche der Geometrie zugrunde liegen. Berichte über die Verhandlungen der Kgl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig, 38, 337–342.

    Google Scholar 

  • Lie, S. (1893). Theorie der Transformationsgruppen (Vol. 3). Leipzig: Teubner.

  • London, F. (1927). Die Theorie von Weyl und die Quantenmechanik. Naturwissenschaften, 15, 187–187.

    Article  Google Scholar 

  • Lorentz, H. A. (1917). On Einstein’s theory of gravitation I. In Proceedings (Vol. 19(II), pp. 1341–1354), Amsterdam Society.

  • Lorentz, H. A. (1923). The determination of the potentials in the general theory of relativity, with some remarks about the measurement of lengths and intervals of time and about the theories of Weyl and Eddington. In Proceedings of Academy (Vol. 29, 1–1), . Amsterdam.

  • Maltese, G., & Orlando, L. (1995). The definition of rigidity in the special theory of relativity and the genesis of the general theory of relativity. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 26(3), 263–306.

    Article  Google Scholar 

  • Marzke, R., & Wheeler, J. (1964). Gravitation as geometry I: The geometry of spacetime and the geometrodynamical standard meter. In H. Chiu & W. Hoffman (Eds.), Gravitation and Relativity. New York: Benjamin.

    Google Scholar 

  • Marzke, R. F. (1959). The theory of measurement in general relativity. Princeton, NJ: Department of Physics Senior Thesis.

    Google Scholar 

  • Nagel, E. (1950). Einstein’s philosophy of science. The Kenyon Review, 12(3), 520–531.

    Google Scholar 

  • Noether, F. (1910). Zur Kinematik des starren Körpers in der Relativitätstheorie. Annalen der Physik, 31, 919–944.

    Google Scholar 

  • Norton, J. D. (1999). Geometries in collision: Einstein, Klein and Riemann. In J. Gray (Ed.), The symbolic universe (pp. 128–144). Oxford: Oxford University Press.

    Google Scholar 

  • O’Raifeartaigh, L. (1997). The dawning of gauge theory. Princeton: Princeton University Press.

  • O’Raifeartaigh, L., & Straumann, N. (2000). Gauge theory: Historical origins and some modern developments. Reviews of Modern Physics, 72, 1–23.

    Article  Google Scholar 

  • Pais, A. (1982). Subtle is the Lord: The science and the life of Albert Einstein. New York: Oxford University Press.

    Google Scholar 

  • Parrini, P. (2005). L’empirismo logico. Aspetti storici e prospettive teoriche. Roma: Carocci

  • Pesic, P. (2007). Beyond geometry: Classic papers from Riemann to Einstein. Mineola, NY: Dover Publications.

    Google Scholar 

  • Putnam, H. (1963). An examination of Grünbaum’s philosophy of space and time. In B. Baumrin (Ed.), Philosophy of science. The Delaware Seminar vol. 2, 1962–1963 (pp. 205–255). New York: Interscience/Wiley (now in Putnam, 1975, 93–129).

  • Reich, K. (1992). Levi-Civitasche Parallelverschiebung, affiner Zusammenhang, Übertragungsprinzip: 1916/1917–1922/1923. Archiv für Geschichte der Philosophie, 44(1), 77–105.

    Google Scholar 

  • Reich, K. (1994). Die Entwicklung des Tensorkalküls: vom absoluten Differentialkalkül zur Relativitätstheorie. Berlin: Birkhaüser.

    Book  Google Scholar 

  • Reichenbach, H. (1920). Relativitätstheorie und Erkenntnis apriori. Berlin: Springer (now in Reichenbach 1975, vol. III, 191–332).

  • Reichenbach, H. (1921). Der gegenwärtige Stand der Relativitätsdiskussion. Eine kritische Untersuchung. Logos, 22(10), 316–378 (now in Reichenbach 1977, vol. III).

  • Reichenbach, H. (1922). La signification philosophique de la théorie de la relativité. Revue philosophique de la France et de l’Étranger, 93, 5–61.

    Google Scholar 

  • Reichenbach, H. (1924). Axiomatik der relativistischen Raum-Zeit-Lehre. Vieweg: Braunschweig.

    Google Scholar 

  • Reichenbach, H. (1925). Über die physikalischen Konsequenzen der relativistischen Axiomatik. Zeitschrift für Physik, 34(1), 32–48.

    Article  Google Scholar 

  • Reichenbach, H. (1928). Philosophie der Raum-Zeit-Lehre. Berlin and Leipzig: Walter de Gruyter (now in Reichenbach 1977, Vol II).

  • Reichenbach, H. (1929a). Ziele und Wege der physikalischen Erkenntnis. In Handbuch der Physik, vol. 4: Allgemeine Grundlagen der Physik (pp. 1–80). Berlin: Springer.

  • Reichenbach, H. (1929b). Die neue Theorie Einsteins über die Verschmelzung von Gravitation und Elektrizität. Zeitschrift für Angewandte Chemie, 42, 121–123.

    Article  Google Scholar 

  • Reichenbach, H. (1949). The philosophical significance of the theory of relativity. In P. A. Schilpp (Ed.), Albert Einstein. Philosopher-Scientist (pp. 289–311). New York: Tudor.

    Google Scholar 

  • Reichenbach, H. (1951). The rise of scientific philosophy. Berkely: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1958). The philosophy of space and time. New York: Dover.

    Google Scholar 

  • Reichenbach, H. (1965). The Theory of Relativity and a priori Knowledge. Berkeley: University of California Press.

  • Reichenbach, H. (1969). Axiomatization of the theory of relativity. Berkeley, CA: University of California Press.

    Google Scholar 

  • Reichenbach, H. (1977). Gesammelte Werke in 9 Bänden. Braunschweig; Wiesbaden: Vieweg.

  • Reichenbach H. (1978). Selected writings: 1909–1953. Vienna circle collection, Vol. 4. Dordrecht: Reidel.

  • Ricci-Curbastro, G. (1883). Principii di una teoria delle forme differenziali quadratiche. Annali di Matematica Pura ed Applicata, 12, 135–167 (now in Ricci-Curbarstro 1956–57, I).

  • Ricci-Curbastro, G. (1886). Sui parametri e gli invarianti delle forme quadratiche differenziali. Annali di Matematica Pura ed Applicata (1867–1897), 14, 1–11 (now in Ricci-Curbarstro 1956–57, I).

  • Ricci-Curbastro, G. (1888). Delle Derivazioni covarianti e controvarianti e del loro uso nella analisi applicata. In Studi editi dalla Università di Padova a commemorare l’ottavo centenario della Università di Bologna (Vol. 3, pp. 3–23). Padova: Tip. del Seminario.

  • Ricci-Curbastro, G. (1889). Sopra certi sistemi di funzioni. Atti Accad. Lincei, 4/6, 112–118 (now in Ricci-Curbarstro 1956–57, I).

  • Ricci-Curbastro, G. (1892). Le calcul différentiel absolu. Bulletin des sciences mathématiques, 16, 167–189.

    Google Scholar 

  • Ricci-Curbastro G. (1956–1957). Opere. Roma: Cremonese.

  • Ryckman, T. (1995). Weyl, Reichenbach and the Epistemology of Geometry. Studies in History and Philosophy of Science, 25(6), 831–870.

    Article  Google Scholar 

  • Ryckman, T. (1996). Einstein Agonists: Weyl and Reichenbach on geometrv and the general theory of relativity. In R. N. Giere (Ed.), Origins of logical empiricism (pp. 165–209). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Ryckman, T. (2005). The reign of relativity. Philosophy in physics 1915–1925. Oxford, NY: Oxford University Press.

    Book  Google Scholar 

  • Rynasiewicz, R. (2005). Weyl vs. Reichenbach on Lichtgeometrie. In A. J. Kox & J. Eisenstaedt (Eds.), The universe of general relativity. Boston: Birkhäuser.

    Google Scholar 

  • Sauer, T. (2006). Field equations in teleparallel space–time: Einstein’s Fernparallelismus approach toward unified field theory. Historia Mathematica, 33(4), 399–439.

    Article  Google Scholar 

  • Sauer T. (2008). The Einstein-Varićak correspondence on relativistic rigid rotation. In R. J. H. Kleinert & R. Ruffini (Eds.), The eleventh Marcel Grossmann meeting on recent developments in theoretical and experimental general relativity, gravitation and relativistic field theories. Singapore: World Scientific Pub. Co.

  • Schlick, M. (1917). Raum und Zeit in der gegenwärtigen Physik. Zur Einführung in das Verständnis der allgemeinen Relativitätstheorie. Die Naturwissenschaften, 5, 161–167, 177–186 (now in Schlick, 2006, vol. II).

  • Schlick, M. (1918). Allgemeine Erkenntnisslehre. Naturwissenschaftliche Monographien und Lehrbücher. Berlin: Springer (now in Schlick 2006, vol. I).

  • Schlick, M. (1921). Review of Einstein 1921. Die Naturwissenschaften, 22, 435–436.

    Article  Google Scholar 

  • Schlick, M. (1925). Allgemeine Erkenntnisslehre (2nd ed.). Naturwissenschaftliche Monographien und Lehrbücher. Berlin: Springer (now in Schlick 2006, vol. 1).

  • Schlick M. (1978). Philosophical papers. Vienna Circle collection, Vol. 11. Dordrecht: Reidel.

  • Schlick, M. (2006–). Gesamtausgabe. Berlin: Springer.

  • Schlick, M., & Reichenbach, H. (1920–1922). Correspondence 1920–1922. http://echo.mpiwg-berlin.mpg.de/content/space/space/reichenbach1920-22.

  • Scholz, E. (2004). Hermann Weyl’s analysis of the “problem of space” and the origin of gauge structures. Science in Context, 17, 165–197.

    Article  Google Scholar 

  • Scholz, E. (2008). Weyl geometry in late 20th century physics. In V. Bach & D. E. Rowe (Ed.), Beyond Einstein. Proceedings Mainz conference, September 2008 (to appear). Birkhäuser: Basel (draft at http://arxiv.org/abs/1111.3220)

  • Schwarzschild, K. (1916). Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 189–196).

  • Shapiro, L. S. (1994). Coordinative definition’ and Reichenbach’s semantic framework: A reassessment. Erkenntnis, 41(3), 287–323.

    Article  Google Scholar 

  • Stachel, J. (1989). The rigidly rotating disk as the ‘missing link in the history of general relativity’. In D. Howard & J. Stachel (Eds.), Einstein and the history of general relativity (Einstein Studies, Vol. 1) (pp. 48–62). Boston: Birkhäuser.

    Google Scholar 

  • Stachel, J. (1998) (ed.). Einstein’s miraculous year: five papers that changed the face of physics. Princeton: Princeton University Press.

  • Stachel, J. (2002). Einstein from “B” to “Z”. Boston: Birkhäuser.

    Google Scholar 

  • Synge, J. (1960). Relativity: The general theory. Amsterdam/New York: North-Holland Pub. Co./Interscience Publishers.

    Google Scholar 

  • Torretti, R. (1978). Philosophy of geometry from Riemann to Poincaré. Dordrecht: Reidel.

    Book  Google Scholar 

  • Torretti, R. (1983). Relativity and geometry. Oxford: Pergamon Press.

    Google Scholar 

  • Torretti, R. (1999). The philosophy of physics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Vizgin, V. P. (1994). Unified field theories in the first third of the 20th century. Boston: Birkhäuser.

    Book  Google Scholar 

  • von Laue, M. (1911). Zur Diskussion über den starren Körper in der Relativitätstheorie. Physikalische Zeitschrift, 12, 85–87.

    Google Scholar 

  • Weyl, H. (1918a). Erwiderung auf Einsteins Nachtrag zu H. Weyl, Gravitation und Elektrizität. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 478–480) (now in WGA II, Doc. 31).

  • Weyl, H. (1918b). Gravitation und Elektrizität. Sitzungsberichte der Preussischen Akademie der Wissenschaften (pp. 65–480) (now in WGA II, Doc. 31).

  • Weyl, H. (1918c). Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie. Berlin: Springer.

    Google Scholar 

  • Weyl, H. (1918s). Reine Infinitesimalgeometrie. Mathematische Zeitschrift 2, 384–411 (now in WGA II, Doc. 30).

  • Weyl, H. (1919a). Eine neue Erweiterung der Relativitätstheorie. Annalen der Physik, 59, 101–133 (now in WGA II, Doc. 34).

  • Weyl, H. (1919b). Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie (2nd ed). Berlin: Springer.

  • Weyl, H. (1920). Elektrizität und Gravitation. Physikalische Zeitschrift, 21(23/24), 649–650 (now in WGA II, Doc. 40).

  • Weyl, H. (1921a). Über die physikalischen Grundlagen der erweiterten Relativitätstheorie. Physikalische Zeitschrift, 22, 473–480 (now in WGA II, Doc. 46).

  • Weyl, H. (1921b). Electricity and gravitation. Nature, 106, 800–802 (now in WGA II, Doc. 48).

  • Weyl, H. (1921c). Feld und Materie. Annalen der Physik, 65, 541–563 (now in WGA II, Doc. 47).

  • Weyl, H. (1921d). Raum, Zeit, Materie: Vorlesungen über allgemeine Relativitätstheorie (4th ed.). Berlin: Springer.

  • Weyl, H. (1921e). Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematisch Physikalische Klasse, 99–112 (now in WGA II, Doc. 43).

  • Weyl, H. (1922). Die Relativitätstheorie auf der Naturforscherversammlung. Jahresbericht der Deutschen Mathematikervereinigung, 31, 51–63 (now in WGA II, Doc. 52).

  • Weyl, H. (1922). Space–time–matter. London: Methuen & Co. Ltd.

    Google Scholar 

  • Weyl, H. (1924a). Massenträgheit und Kosmos. Ein Dialog. Naturwissenschaften, 12, 197–204 (now in WGA II, Doc. 65).

  • Weyl, H. (1924b). Rezension von: H. Reichenbach: Axiomatik der relativistischen Raum- Zeit Lehre. Deutsche Literaturzeitung, 45, 2122–2128.

    Google Scholar 

  • Weyl, H. (1927). Philosophie der Mathematik und Naturwissenschaft. In A. Bäumler & M. Schröter (Eds.), Handbuch der Philosophie. München/Berlin: Oldenbourg.

  • Weyl, H. (1929). Gravitation and the electron. Proceedings of the National Academy of Sciences of the United States of America, 15, 323–334.

    Article  Google Scholar 

  • Weyl, H. (1949). Philosophy of mathematics and natural science. Princeton: Princeton University Press.

    Google Scholar 

  • WGA: Weyl, H. (1968). Gesammelte Abhandlungen. Berlin: Springer.

  • Yang, C.-N. (1986). Hermann Weyl’s contribution to physics. In C. N. Yang, R. Penrose, A. Borel, & K. Chandrasekharan (Eds.), Hermann Weyl: 1885–1985; centenary lectures. Berlin: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Giovanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovanelli, M. Talking at cross-purposes: how Einstein and the logical empiricists never agreed on what they were disagreeing about. Synthese 190, 3819–3863 (2013). https://doi.org/10.1007/s11229-012-0229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-012-0229-1

Keywords

Navigation