Skip to main content

Advertisement

Log in

Augmented reality for dental implant surgery: enhanced ICP

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Augmented reality surgery has not been successfully implemented in dental implant surgery due to the negative impact of an incorrect implant placement. This research aimed to improve the convergence between computed tomography derived teeth model and real-time stereo view of patient’s teeth to provide high registration accuracy. Enhanced iterative closest point algorithm is proposed to reduce the error caused due to matching wrong points. Weighting mechanism and median value are used to reduce alignment error caused due to matching wrong points. In addition, random sample consensus (RANSAC) algorithm is used to detect and remove the outlier. Furthermore, the current solution for dental implants did not provide the position and orientation of the surgical tool, and without this information, there is a risk of damaging adjacent structure, dental nerves, and root canals. Optical tracking device is used in the proposed solution to address this information and ensure that nerve does not get damaged during the dental implant placement surgery. While the state-of-the-art solution provided 0.44 mm registration accuracy, the proposed solution was improving it by providing 0.33 mm registration accuracy. Additionally, the proposed system can produce good results despite not having a good initialization. The processing time improved to 14 fps in comparison to the 9-fps given by state-of-the-art solution. The proposed system improved the accuracy of convergence and the processing time compared to the globally optimal-ICP algorithm. We also employed RANSAC algorithm to detect and remove the outlier on the estimation and reduce the influence of extreme points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICP:

Iterative closest point

Go-ICP:

Globally optimal iterative closest point

RANSAC:

Random sampling consensus

CT:

Computed tomography

AR:

Augmented reality

EICP:

Enhanced iterative closest point

RMaTV:

Rotation matrix and translation vector

TLD:

Tracking learning detection

PCA:

Principle component analysis

CPD:

Coherent point drift

SVD:

Singular value decomposition

VST-AR:

Video see-through augmented reality

MKLMN:

Modified kernel non-local

References

  1. Wang J et al (2013) Real-time marker-free patient registration and image-based navigation using stereovision for dental surgery. In: Liao H, Linte CA, Masamune K, Peters TM, Zheng G (eds) Augmented reality environments for medical imaging and computer-assisted interventions. Springer, Berlin, pp 9–18

    Chapter  Google Scholar 

  2. Ma L et al (2019) Augmented reality surgical navigation with accurate CBCT-patient registration for dental implant placement. Med Biol Eng Compu 57(1):47–57. https://doi.org/10.1007/s11517-018-1861-9

    Article  Google Scholar 

  3. Basnet BR, Alsadoon A, Withana C, Deva A, Paul M (2018) A novel noise filtered and occlusion removal: navigational accuracy in augmented reality-based constructive jaw surgery. Oral Maxillofac Surg 22(4):385–401. https://doi.org/10.1007/s10006-018-0719-5

    Article  Google Scholar 

  4. Weipeng J et al (2018) Evaluation of the 3D augmented reality–guided intraoperative positioning of dental implants in edentulous mandibular models. Int J Oral Maxillofac Implants 33(6):1219–1228. https://doi.org/10.11607/jomi.6638

    Article  Google Scholar 

  5. Wang J, Suenaga H, Yang L, Kobayashi E, Sakuma I (2017) Video see-through augmented reality for oral and maxillofacial surgery. Int J Med Robot Comput Assis Surg 13(2):e1754. https://doi.org/10.1002/rcs.1754

    Article  Google Scholar 

  6. Wang J, Shen Y, Yang S (2019) A practical marker-less image registration method for augmented reality oral and maxillofacial surgery (in English). Int J Comput Assist Radiol Surg 14(5):763–773. https://doi.org/10.1007/s11548-019-01921-5

    Article  Google Scholar 

  7. Nakao M, Endo S, Nakao S, Yoshida M, Matsuda T (2016) Augmented endoscopic images overlaying shape changes in bone cutting procedures (in English). PLoS ONE 11(9):e0161815. https://doi.org/10.1371/journal.pone.0161815

    Article  Google Scholar 

  8. Chen X, Xu L, Wang H, Wang F, Wang Q, Kikinis R (2017) Development of a surgical navigation system based on 3D Slicer for intraoperative implant placement surgery. Med Eng Phys 41:81–89. https://doi.org/10.1016/j.medengphy.2017.01.005

    Article  Google Scholar 

  9. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422. https://doi.org/10.1109/TPAMI.2011.239

    Article  Google Scholar 

  10. Ulrich M, Wiedemann C, Steger C (2012) Combining scale-space and similarity-based aspect graphs for fast 3D object recognition. IEEE Trans Pattern Anal Mach Intell 34(10):1902–1914. https://doi.org/10.1109/TPAMI.2011.266

    Article  Google Scholar 

  11. Murugesan YP, Alsadoon A, Manoranjan P, Prasad PWC (2018) A novel rotational matrix and translation vector algorithm: geometric accuracy for augmented reality in oral and maxillofacial surgeries. Int J Med Robot Comput Assist Surg 14(3):e1889. https://doi.org/10.1002/rcs.1889

    Article  Google Scholar 

  12. Pokhrel S, Alsadoon A, Prasad PWC, Paul M (2019) A novel augmented reality (AR) scheme for knee replacement surgery by considering cutting error accuracy. Int J Med Robot Comput Assist Surg 15(1):e1958. https://doi.org/10.1002/rcs.1958

    Article  Google Scholar 

  13. Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H (2017) Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg 12(12):2205–2215. https://doi.org/10.1007/s11548-017-1652-z

    Article  Google Scholar 

  14. Thompson S et al (2016) Hand-eye calibration for rigid laparoscopes using an invariant point (in English). Int J Comput Assist Radiol Surg 11(6):1071–1080. https://doi.org/10.1007/s11548-016-1364-9

    Article  Google Scholar 

  15. Yamaguchi S, Ohtani T, Yatani H, Sohmura T (2009) Augmented reality system for dental implant surgery. In: Virtual and mixed reality. Springer, Berlin, pp 633–638

  16. Collins JA et al (2017) Improving registration robustness for image-guided liver surgery in a novel human-to-phantom data framework. IEEE Trans Med Imaging 36(7):1502–1510. https://doi.org/10.1109/TMI.2017.2668842

    Article  Google Scholar 

  17. Totz J et al (2014) Fast semi-dense surface reconstruction from stereoscopic video in laparoscopic surgery. In: Cham A, Stoyanov D, Collins DL, Sakuma I, Abolmaesumi P, Jannin P (eds) Information processing in computer-assisted interventions. Springer, Berlin, pp 206–215

    Chapter  Google Scholar 

  18. Thompson S et al (2018) In vivo estimation of target registration errors during augmented reality laparoscopic surgery. Int J Comput Assist Radiol Surg 13(6):865–874. https://doi.org/10.1007/s11548-018-1761-3

    Article  Google Scholar 

  19. Wang J, Shen Y, Yang S (2019) A practical marker-less image registration method for augmented reality oral and maxillofacial surgery. Int J Comput Assist Radiol Surg 14(5):763–773. https://doi.org/10.1007/s11548-019-01921-5

    Article  Google Scholar 

  20. Wang J et al (2015) 3D surgical overlay with markerless image registration using a single camera. In: Cham, 2015: Springer International Publishing, in Augmented Environments for Computer-Assisted Interventions, pp 124–133

  21. Yang J, Li H, Campbell D, Jia Y (2016) Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Trans Pattern Anal Mach Intell 38(11):2241–2254. https://doi.org/10.1109/TPAMI.2015.2513405

    Article  Google Scholar 

  22. Ma Q et al (2019) Development and preliminary evaluation of an autonomous surgical system for oral and maxillofacial surgery. Int J Med Robot Comput Assist Surg 15(4):e1997. https://doi.org/10.1002/rcs.1997.33933

    Article  Google Scholar 

  23. Wang J et al (2015) Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation (in English). Comput Med Imaging Graph 40:147–159. https://doi.org/10.1016/j.compmedimag.2014.11.003

    Article  Google Scholar 

  24. Zhang X et al (2019) A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy. Int J Comput Assist Radiol Surg 14(8):1285–1294. https://doi.org/10.1007/s11548-019-01974-6

    Article  Google Scholar 

  25. Rucker DC et al (2014) A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data (in English). IEEE Trans Med Imaging 33(1):147–158. https://doi.org/10.1109/tmi.2013.2283016

    Article  MathSciNet  Google Scholar 

  26. Thompson S et al (2015) Accuracy validation of an image guided laparoscopy system for liver resection (SPIE medical imaging). In: SPIE

  27. De Paolis LT, De Luca V (2019) Augmented visualization with depth perception cues to improve the surgeon’s performance in minimally invasive surgery. Med Biol Eng Compu 57(5):995–1013. https://doi.org/10.1007/s11517-018-1929-6

    Article  Google Scholar 

  28. Lin Q et al (2019) Geometric calibration of markerless optical surgical navigation system. Int J Med Robot Comput Assist Surg 15(2):e1978. https://doi.org/10.1002/rcs.1978

    Article  Google Scholar 

  29. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334. https://doi.org/10.1109/34.888718

    Article  Google Scholar 

  30. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1):37–52. https://doi.org/10.1016/0169-7439(87)80084-9

    Article  Google Scholar 

  31. Wu ML, Chien JC, Wu CT, Lee JD (2018) An augmented reality system using improved-iterative closest point algorithm for on-patient medical image visualization (in English). Sensors (Basel). https://doi.org/10.3390/s18082505

    Article  Google Scholar 

  32. Ahn J, Choi H, Hong J, Hong J (2019) Tracking accuracy of a stereo camera-based augmented reality navigation system for orthognathic surgery. J Oral Maxillofac Surg 77:1070

    Article  Google Scholar 

  33. Gao QH, Wan TR, Tang W, Chen L (2019) Object registration in semi-cluttered and partial-occluded. Multimed Tools Appl 78(11):15079–15099

    Article  Google Scholar 

  34. Liu J, Al’Aref SJ, Singh G, Caprio A, Moghadam AAA, Jang SJ, Wong SC, Min JK, Dunham S, Mosadegh B (2019) An augmented reality system for image guidance of transcatheter procedures for structural heart disease. PLoS ONE 14(7):e0219174. https://doi.org/10.1371/journal.pone.0219174

    Article  Google Scholar 

  35. Pepe A, Trotta GF, Mohr-Ziak P, Gsaxner C, Wallner J, Bevilacqua V, Egger J (2019) A marker-less registration approach for mixed reality–aided maxillofacial surgery: a pilot evaluation. J Digit Imaging 32:1–11

    Article  Google Scholar 

  36. Carl B, Bopp M, Saß B, Pojskic M, Nimsky C (2019) Augmented reality in intradural spinal tumor surgery. Eur Spine J 161(10):2181–2193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Alsadoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, L., Alsadoon, A., Prasad, P.W.C. et al. Augmented reality for dental implant surgery: enhanced ICP. J Supercomput 77, 1152–1176 (2021). https://doi.org/10.1007/s11227-020-03322-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-020-03322-x

Keywords

Navigation