Skip to main content
Log in

Secure CLS and CL-AS schemes designed for VANETs

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Vehicular Ad hoc Network (VANET) is a part of intelligent transport system facing the problem of limited bandwidth. Certificateless aggregate signature (CL-AS) scheme gives an efficient solution of solving the limitation of bandwidth and also reduces the computation overhead. Aggregate signature (AS) allows integrating n number of individual signatures on n distinct messages from n distinct users into one single short signature where any signer out of n signers can generate the signature. We propose efficient CLS and CL-AS schemes for VANET. We demonstrate that our CL-AS scheme preserves the conditional privacy, in which message generated by a vehicle is mapped to a distinct pseudo-identity. The security of the proposed scheme is proved in the random oracle model against adaptive chosen-message attacks with the hardness of computational Diffie–Hellman Problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Diffie W, Hellman ME (1976) New directions in cryptography. IEEE Trans Inf Theory 22(6):644–654

    Article  MathSciNet  MATH  Google Scholar 

  2. Shamir A (1984) Identity based cryptosystems and signature schemes. In: Blakley GR, Chaum D (eds) Crypto’84, LNCS 196. Springer-Verlag, Santa Barbara, pp 47–53

    Google Scholar 

  3. Al-Riyami S, Paterson K (2003) Certificateless public key cryptography. Asiacrypt’ 03, LNCS 2894. Springer, Berlin, pp 452–473

    MATH  Google Scholar 

  4. Boneh D, Gentry C, Lynn B, Shacham H (2003) Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham E (ed) EUROCRYPT 2003, LNCS 2656. Springer-Verlag, Warsaw, pp 416–432

    Google Scholar 

  5. Jayo UH, Mmmu ASK, Iglesia ID Reliable Communication in cooperative ad hoc networks. Chapter 6, 213–244. doi: https://doi.org/10.5772/59041

  6. Huang X, Susilo W, Mu Y, Zhang F (2005) On the security of a certificateless signature scheme. In: Proceedings of the CANS, LNCS, 3810, pp 13–15

  7. Yum DH, Lee PJ (2004) Generic construction of certificateless signature. Information Security and Privacy, LNCS 3108, pp 200–211. https://doi.org/10.1007/978-3-540-27800-9_18

  8. Hu B, Wong D, Zhang Z, Deng X (2006) Key replacement attack against a generic construction of certificateless signature. In: Proceedings of the ACISP’06, LNCS, 4058, pp 235–346

  9. Gorantla M, Saxena A (2005) An Efficient Certificateless Signature Scheme. Comput Intell Secur LNCS 3802:110–116. https://doi.org/10.1007/11596981_16

    Article  Google Scholar 

  10. Cao X, Paterson KG, Kou W (2006) An attack on a certificateless signature scheme. Report 2006/367, Cryptology, ePrint Archive

  11. Zhang L, Zhang F (2009) A new certificateless aggregate signature scheme. Comput Commun 32(6):1079–1085

    Article  MathSciNet  Google Scholar 

  12. Shim KA (2015) Security models for certificateless signature schemes revisited. Inf Sci 296:315–321

    Article  MathSciNet  MATH  Google Scholar 

  13. Xiong H, Guan Z, Chen Z, Li F (2013) An efficient certificateless aggregate signature with constant pairing computation. Inf Sci 219:225–235

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiong H, Wu Q, Chen Z (2011) Strong security enabled certificateless aggregate signatures applicable to mobile computation. In: Third International Conference on Intelligent Networking and Collaborative Systems, Fukuoka, Japan, pp 92–99. https://doi.org/10.1109/incos.2011.151

  15. Zhang F, Shen L, Wu G (2014) Notes on the security of certificateless aggregate signature schemes. Inf Sci 287:32–37

    Article  MathSciNet  MATH  Google Scholar 

  16. Tu H, He D, Huang B (2014) Reattack of a certificateless aggregate signature scheme with constant pairing computations. Sci World J 2014:10. https://doi.org/10.1155/2014/343715

    Google Scholar 

  17. Cheng L, Wen Q, Jin Z, Zhang H, Zhou L (2015) Cryptanalysis and improvement of a certificateless aggregate signature scheme. Inf Sci 295:337–346

    Article  MathSciNet  MATH  Google Scholar 

  18. He D, Tian M, Chen J (2014) Insecurity of an efficient certificateless aggregate signature with constant computations. Inf Sci 268:458–462

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu BC, Wong DS, Zhang Z, Deng X (2007) Certificateless signature: a new security model and an improved generic construction. Des Codes Cryptogr 42(2):109–126

    Article  MathSciNet  MATH  Google Scholar 

  20. Deng J, Xu C, Wu H, Dong L (2016) A new certificateless signature with enhanced security and aggregation version. Concurr Comput Pract Exp 28:1124–1133

    Article  Google Scholar 

  21. Du H, Wen Q (2009) Efficient and provably-secure certificateless short signature scheme from bilinear pairings. Comput Stand Interfaces 31(2):390–394

    Article  Google Scholar 

  22. Choi KY, Park JH, Hwang JY, Lee DH (2007) Efficient certificateless signature schemes. Appl Cryptogr Netw Secur 4521:443–458

    MATH  Google Scholar 

  23. Zhang L, Qin B, Wu Q, Zhang F (2010) Efficient many-to-one authentication with certificateless aggregate signatures. Comput Netw 54(14):2482–2491

    Article  MATH  Google Scholar 

  24. Kumar P, Saru K, Sharma V, Sangaiah AK, Wei J, Li X (2017) A certificateless aggregate signature scheme for healthcare wireless sensor network. Sustain Comput Inform Syst. https://doi.org/10.1016/j.suscom.2017.09.002

    Google Scholar 

  25. He D, Zeadally S (2015) Authentication protocol for an ambient assisted living system. IEEE Commun Mag 53(1):71–77. https://doi.org/10.1109/MCOM.2015.7010518

    Article  Google Scholar 

  26. He D, Wang D (2015) Robust biometrics-based authentication scheme for multiserver environment. IEEE Syst J 9(3):816–823

    Article  Google Scholar 

  27. He D, Kumar N, Shen H, Lee HJ (2016) One to many authentication for access control in mobile pay TV system. Sci China Inf Sci 59(5):052108

    Article  MathSciNet  Google Scholar 

  28. Martinelli F, Mercaldo F, Orlando A, Nardone V, Santone A, Sangaiah AK (2018) Human behavior characterization for driving style recognition in vehicle system. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2017.12.050

    Google Scholar 

  29. Chahal M, Harit S, Mishra KK, Sangaiah AK, Zheng Z (2017) A Survey on software-defined networking in vehicular ad hoc networks: challenges, applications and use cases. Sustain Cities Soc 35:830–840. https://doi.org/10.1016/j.scs.2017.07.007

    Article  Google Scholar 

  30. Chen C, Min X, Qiu TQ, Liu L, Sangaiah AK (2017) Latency estimation based on traffic density for video streaming in the internet of vehicles. Comput Commun 111:176–186. https://doi.org/10.1016/j.comcom.2017.08.010

    Article  Google Scholar 

  31. Chen C, Liu X, Tie Q, Sangaiah AK (2017) A short-term traffic prediction model in the vehicular cyber–physical systems. Future Gener Comput Syst. https://doi.org/10.1016/j.future.2017.06.006

    Google Scholar 

  32. Zhang C, Lu R, Lin X, Ho PH, Shen X (2008) An efficient identity-based batch verification scheme for vehicular sensor networks. In: Proceedings of the IEEE INFOCOM, pp 816–824. https://doi.org/10.1109/infocom.2008.58

  33. Shim KA (2012) CPAS: an efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE Trans Vehic Technol 61(4):1874–1883

    Article  Google Scholar 

  34. Gong Z, Long Y, Hong X, Chen K (2007) Two certificateless aggregate signatures from bilinear maps. In: Proceedings of the IEEE SNPD, 3, pp 188–193. https://doi.org/10.1109/snpd.2007.132

  35. Hubaux JP, Capkun S, Luo J (2004) The security and privacy of smart vehicles. IEEE Secur Priv 2(3):49–55

    Article  Google Scholar 

  36. Raya M, Hubaux JP (2007) Securing vehicular ad hoc networks. J Comput Secur 15(1):39–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saru Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Kumari, S., Sharma, V. et al. Secure CLS and CL-AS schemes designed for VANETs. J Supercomput 75, 3076–3098 (2019). https://doi.org/10.1007/s11227-018-2312-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-018-2312-y

Keywords

Navigation