Skip to main content
Log in

Adsorption behavior of hydrogen selenide gas on the surfaces of pristine and Ni-doped X12Y12 (X=Al, B and Y=N, P) nano-cages: a first-principles study

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Fullerene-like nanocages are being highly investigated in recent times for gas sensing applications. In this work, we explored the hydrogen selenide (H2Se) gas adsorption on the surfaces of pure and Ni-doped fullerene-like Al12N12 (AlN), Al12P12 (AlP), B12N12 (BN), and B12P12 (BP) nanocages using density functional theory (DFT). The interaction of H2Se gas with BN, BP, and Ni-doped BN nanocages exhibit low adsorption energy, whereas AlN, AlP, and Ni-decorated B12P12 (Ni_BP) exhibit higher adsorption energy. To obtain better insight into the interaction of H2Se gas with the nanocages; dipole moment, HOMO-LUMO orbitals, NBO charge transfer, global indices, thermodynamic parameters, DOS, and UV spectrum are examined. The QTAIM analysis is also performed to know more about the microscopic insight of sensing behavior and the intermolecular bonding nature. Thus, our calculated results indicate that AlN, AlP, and Ni-doped nanocages are promising candidates for sensing of H2Se gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code availability

Gaussian 09 package program.

References

  1. Salih E, Ayesh AI (2020) First principle investigation of H2Se, H2Te and PH3 sensing based on graphene oxide. Phys Lett A 384:126775. https://doi.org/10.1016/j.physleta.2020.126775

  2. Xin F, Tian Y, Zhang X (2020) Ratiometric fluorescent probe for highly selective detection of gaseous H2Se. Dye Pigment 177:108274. https://doi.org/10.1016/j.dyepig.2020.108274

  3. Abrishamifar SM, Heidari N, Razavi R et al (2018) The Cl functionalized aluminum nitride (AlN) and aluminum phosphide (AlP) nanocone sheets as hydrogen selenide (H2Se) sensor: a density functional investigation. Acta Chim Slov 65:208–212

    Article  CAS  PubMed  Google Scholar 

  4. The National Institute for Occupational Safety and Health, occupational health guideline for hydrogen selenide. https://www.cdc.gov/niosh/docs/81-123/pdfs/0336.

  5. Colin A at AE H2Se gas detector, hydrogen selenium, selenium hydride...en.gasdetect.com. https://en.gazdetect.com/gas-information/h2se-gas-detector/

  6. Aiga S Asia Industrial Gases Association. Code of practice hydrogen selenide H 2 Se. https://www.asiaiga.org/

  7. William CLY, Yaws CL  (2001) Hydrogen selenide, Matheson gas data book, 7 th ed., 2001, Matheson, basking ridge, NJ 07920. https://www.mathesongas.com. In: Matheson gas data book. Parsippany, NJ : Matheson Tri-Gas ; New York : McGraw-Hill.

  8. Hussain S, Shahid Chatha SA, Hussain AI et al (2020) Designing novel Zn-decorated inorganic B12P12 nanoclusters with promising electronic properties: a step forward toward efficient CO2 sensing materials. ACS Omega 5:15547–15556. https://doi.org/10.1021/acsomega.0c01686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ammar HY, Eid KM, Badran HM (2021) The impact of an external electric field on methanol adsorption on XB11N12 (X=B, Co, Ni) nano-cages: a DFT and TD-DFT study. J Phys Chem Solids 153:110033. https://doi.org/10.1016/j.jpcs.2021.110033

  10. Shokuhi Rad A, Esfahanian M, Maleki S, Gharati G (2016) Application of carbon nanostructures toward SO2 and SO3 adsorption: a comparison between pristine graphene and N-doped graphene by DFT calculations. J Sulfur Chem 37:176–188. https://doi.org/10.1080/17415993.2015.1116536

    Article  CAS  Google Scholar 

  11. Rad AS, Shadravan A, Soleymani AA, Motaghedi N (2015) Lewis acid-base surface interaction of some boron compounds with N-doped graphene; first principles study. Curr Appl Phys 15:1271–1277. https://doi.org/10.1016/j.cap.2015.07.018

  12. Lv R, Li Q, Botello-Méndez AR et al (2012) Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Sci Rep 2:586. https://doi.org/10.1038/srep00586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rad AS, Shabestari SS, Mohseni S, Aghouzi SA (2016) Study on the adsorption properties of O3, SO2, and SO3 on B-doped graphene using DFT calculations. J Solid State Chem 237:204–210. https://doi.org/10.1016/j.jssc.2016.02.023

  14. Cui H, Zhang G, Zhang X, Tang J (2019) Rh-doped MoSe(2) as a toxic gas scavenger: a first-principles study. Nanoscale Adv 1:772–780. https://doi.org/10.1039/c8na00233a

    Article  CAS  PubMed  Google Scholar 

  15. Cui H, Zhang X, Li Y et al (2019) First-principles insight into Ni-doped InN monolayer as a noxious gases scavenger. Appl Surf Sci 494:859–866. https://doi.org/10.1016/j.apsusc.2019.07.218

  16. Cui H, Yan C, Jia P, Cao W (2020) Adsorption and sensing behaviors of SF6 decomposed species on Ni-doped C3N monolayer: a first-principles study. Appl Surf Sci 512:145759. https://doi.org/10.1016/j.apsusc.2020.145759

  17. Cui H, Feng Z, Wang W et al (2022) Adsorption behavior of Pd-doped PtS2 monolayer upon SF6 decomposed species and the effect of applied electric field. IEEE Sens J 22:6764–6771. https://doi.org/10.1109/JSEN.2022.3154119

    Article  CAS  Google Scholar 

  18. Zhang C (2012) First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys 111:43702. https://doi.org/10.1063/1.3686144

    Article  CAS  Google Scholar 

  19. Kandalam AK, Pandey R, Blanco MA et al (2000) First principles study of polyatomic clusters of AlN, GaN, and InN. 1. Structure, stability, vibrations, and ionization. J Phys Chem B 104:4361–4367. https://doi.org/10.1021/jp994308s

    Article  CAS  Google Scholar 

  20. Costales A, Kandalam AK, Franco R, Pandey R (2002) Theoretical study of structural and vibrational properties of (AlP) n,(AlAs) n,(GaP) n,(GaAs) n,(InP) n, and (InAs) n clusters with n= 1, 2, 3. J Phys Chem B 106:1940–1944

    Article  CAS  Google Scholar 

  21. Yong Y, Liu K, Song B et al (2012) Coalescence of BnNn fullerenes: a new pathway to produce boron nitride nanotubes with small diameter. Phys Lett A 376:1465–1467

    Article  CAS  Google Scholar 

  22. Guldi DM, Illescas BM, Atienza CM et al (2009) Fullerene for organic electronics. Chem Soc Rev 38:1587–1597. https://doi.org/10.1039/B900402P

    Article  CAS  PubMed  Google Scholar 

  23. Rad AS, Ayub K (2017) Adsorption properties of acetylene and ethylene molecules onto pristine and nickel-decorated Al12N12 nanoclusters. Mater Chem Phys 194:337–344. https://doi.org/10.1016/j.matchemphys.2017.04.002

  24. Rad AS, Ayub K (2017) O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by nickel decoration: a comprehensive DFT study. Solid State Sci 69:22–30. https://doi.org/10.1016/j.solidstatesciences.2017.05.007

  25. Shokuhi Rad A, Ayub K (2016) A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B12N12, and B12P12 nano-cages. J Alloys Compd 672:161–169. https://doi.org/10.1016/j.jallcom.2016.02.139

  26. Jensen F, Toftlund H (1993) Structure and stability of C24 and B12N12 isomers. Chem Phys Lett 201:89–96. https://doi.org/10.1016/0009-2614(93)85039-Q

    Article  CAS  Google Scholar 

  27. Bezi Javan M, Soltani A, Tazikeh Lemeski E et al (2016) Interaction of B12N12 nano-cage with cysteine through various functionalities: a DFT study. Superlattices Microstruct 100:24–37. https://doi.org/10.1016/j.spmi.2016.08.035

  28. Baei MT (2013) B12N12 sodalite like cage as potential sensor for hydrogen cyanide. Comput Theor Chem 1024:28–33. https://doi.org/10.1016/j.comptc.2013.09.018

  29. Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mater 5:635–638. https://doi.org/10.1016/j.stam.2004.03.017

    Article  CAS  Google Scholar 

  30. Rad AS, Ayub K (2018) How can nickel decoration affect H2 adsorption on B12P12 nano-heterostructures? J Mol Liq 255:168–175. https://doi.org/10.1016/j.molliq.2018.01.149

  31. Beheshtian J, Kamfiroozi M, Bagheri Z (2012) Theoretical study of hydrogen adsorption on the B 12P 12 fullerene-like nanocluster. Comput Mater Sci - Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2011.09.039

    Article  Google Scholar 

  32. Shokuhi Rad A, Bagheri Novir S, Mohseni S et al (2017) A DFT study of O2 and Cl2 adsorption onto Al12N12 fullerene-like nanocluster. Heteroat Chem 28:e21396. https://doi.org/10.1002/hc.21396

  33. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2012) A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J Mol Model 18:2653–2658. https://doi.org/10.1007/s00894-011-1286-y

    Article  CAS  PubMed  Google Scholar 

  34. Soltani A, Baei MT, Taghartapeh MR et al (2015) Phenol interaction with different nano-cages with and without an electric field: a DFT study. Struct Chem 26:685–693. https://doi.org/10.1007/s11224-014-0504-5

    Article  CAS  Google Scholar 

  35. Peyghan AA, Soleymanabadi H (2015) Computational study on ammonia adsorption on the X 12 Y 12 nano-clusters (X= B, Al and Y= N, P). Curr Sci 1910–1914

  36. Beheshtian J, Peyghan AA, Bagheri Z (2012) Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput Mater Sci 62:71–74. https://doi.org/10.1016/j.commatsci.2012.05.041

  37. Beheshtian J, Bagheri Z, Kamfiroozi M, Ahmadi A (2011) Toxic CO detection by B12N12 nanocluster. Microelectronics J 42:1400–1403. https://doi.org/10.1016/j.mejo.2011.10.010

  38. Munsif S, Maria, Khan S et al (2018) Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. J Mol Liq 271:51–64. https://doi.org/10.1016/j.molliq.2018.08.121

  39. Rad AS, Ayub K (2016) Ni adsorption on Al12P12 nano-cage: a DFT study. J Alloys Compd 678:317–324. https://doi.org/10.1016/jjallcom201603175

  40. Rad AS, Ayub K (2016) Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int J Hydrogen Energy 41:22182–22191

    Article  CAS  Google Scholar 

  41. Rad AS, Ayub K (2016) Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: a surface study by DFT. Vacuum 133:70–80. https://doi.org/10.1016/j.vacuum.2016.08.017

  42. Russo T V, Martin RL, Hay PJ (1994) Density functional calculations on first‐row transition metals. J Chem Phys 101:7729–7737. https://doi.org/10.1063/1.468265

  43. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001. https://doi.org/10.1021/jp9716997

    Article  CAS  Google Scholar 

  44. Becke AD (1992) Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J Chem Phys 96:2155–2160

    Article  CAS  Google Scholar 

  45. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, Gen Phys 38:3098–3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  PubMed  Google Scholar 

  46. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789. https://doi.org/10.1103/physrevb.37.785

    Article  CAS  PubMed  Google Scholar 

  47. Kazemi M, Rad AS (2017) Sulfur mustard gas adsorption on ZnO fullerene-like nanocage: quantum chemical calculations. Superlattices Microstruct 106:122–128. https://doi.org/10.1016/j.spmi.2017.03.046

  48. O’Boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem. https://doi.org/10.1002/jcc.20823

    Article  PubMed  Google Scholar 

  49. Hossain MR, Hasan MM, Nishat M et al (2021) DFT and QTAIM investigations of the adsorption of chlormethine anticancer drug on the exterior surface of pristine and transition metal functionalized boron nitride fullerene. J Mol Liq 323:114627

    Article  CAS  Google Scholar 

  50. Oishi AA, Dhali P, Das A et al (2022) Study of the adsorption of chloropicrin on pure and Ga and Al doped B12N12: a comprehensive DFT and QTAIM investigation. Mol Simul. https://doi.org/10.1080/08927022.2022.2053121

    Article  Google Scholar 

  51. Rakib Hossain M, Mehade Hasan M, Ud Daula Shamim S et al (2021) First-principles study of the adsorption of chlormethine anticancer drug on C24, B12N12 and B12C6N6 nanocages. Comput Theor Chem 1197:113156. https://doi.org/10.1016/j.comptc.2021.113156

  52. T.A. Keith (2010) AIMAll (Version 16.05. 18), TK Gristmill Software, Overl. Park KS, USA. https://doi.org/10.1007/BF02708340

  53. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799

    Article  CAS  Google Scholar 

  54. Shamim SUD, Hussain T, Hossian MR et al (2020) A DFT study on the geometrical structures, electronic, and spectroscopic properties of inverse sandwich monocyclic boron nanoclusters ConBm (n = 1.2; m = 6–8). J Mol Model 26:1–17. https://doi.org/10.1007/s00894-020-04419-z

    Article  CAS  Google Scholar 

  55. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740. https://doi.org/10.1021/ic00277a030

    Article  CAS  Google Scholar 

  56. Hasan MM, Bithe SA, Neher B, Ahmed F (2022) Polythiophene as a sensor model for chlorofluorocarbon, fluorine, and oxygen gas using DFT calculations. J Mol Model 28:59. https://doi.org/10.1007/s00894-022-05048-4

    Article  CAS  PubMed  Google Scholar 

  57. Hossain MR, Hasan MM, Ashrafi NE, Rahman, H, Rahman MS, Ahmed F, Ferdous T, Hossain MA (2021) Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nano. Phys E Low-dimensional Syst Nanostructures 126:114483. https://doi.org/10.1016/j.physe.2020.114483

  58. Keith TA (2010) AIMAll (Version 10.07. 25). Overland Park, KS, USA: TK Gristmill Software

  59. Ullah F, Irshad S, Khan S et al (2021) Nonlinear optical response of first-row transition metal doped Al12P12 nanoclusters; a first-principles study. J Phys Chem Solids 151:109914. https://doi.org/10.1016/j.jpcs.2020.109914

    Article  CAS  Google Scholar 

  60. Hossain MR, Hasan MM, Ashrafi N-E- et al (2021) Adsorption behaviour of metronidazole drug molecule on the surface of hydrogenated graphene, boron nitride and boron carbide nanosheets in gaseous and aqueous medium: a comparative DFT and QTAIM insight. Phys E Low-dimensional Syst Nanostructures 126:114483. https://doi.org/10.1016/j.physe.2020.114483

  61. Rad AS, Valipour P, Gholizade A, Mousavinezhad SE (2015) Interaction of SO2 and SO3 on terthiophene (as a model of polythiophene gas sensor): DFT calculations. Chem Phys Lett 639:29–35

    Article  CAS  Google Scholar 

  62. Shokuhi Rad A, Ayub K (2016) Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131:135–141. https://doi.org/10.1016/j.vacuum.2016.06.012

  63. Rad A, Kashani O (2015) Adsorption of acetyl halide molecules on the surface of pristine and Al-doped graphene: Ab initio study. Appl Surf Sci 355:233. https://doi.org/10.1016/j.apsusc.2015.07.113

    Article  CAS  Google Scholar 

  64. Soltani A, Tazikeh-Lemeski E, Javan MB (2020) A comparative theoretical study on the interaction of pure and carbon atom substituted boron nitride fullerenes with ifosfamide drug. J Mol Liq 297:111894. https://doi.org/10.1016/j.molliq.2019.111894

  65. Kamel M, Raissi H, Morsali A (2017) Theoretical study of solvent and co-solvent effects on the interaction of flutamide anticancer drug with carbon nanotube as a drug delivery system. J Mol Liq 248:490–500. https://doi.org/10.1016/j.molliq.2017.10.078

  66. Carson EM, Watson JR (2002) Undergraduate students’ understandings of entropy and Gibbs free energy. Univ Chem Educ 6:4–12

    CAS  Google Scholar 

  67. Badran HM, Eid KM, Ammar HY (2021) DFT and TD-DFT studies of halogens adsorption on cobalt-doped porphyrin: effect of the external electric field. Results Phys 23:103964. https://doi.org/10.1016/j.rinp.2021.103964

  68. Sajid H, Khan S, Ayub K, Mahmood T (2020) High selectivity of cyclic tetrapyrrole over tetrafuran and tetrathiophene toward toxic chemicals; a first-principles study. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2020.110126

    Article  Google Scholar 

  69. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161. https://doi.org/10.1021/ja0017864

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Physics, Computational Condensed Matter Physics Laboratory at Jahangirnagar University,Savar, Dhaka, Bangladesh, for their software support. We would like to thank Jashore University of Science and Technology (JUST) for enabling us to execute the optimized nanostructures at the Department of Physics under the Faculty of Science.

Author information

Authors and Affiliations

Authors

Contributions

Antu Das: conceptualization, formal analysis, investigation, writing—original draft,Palash Dhali: writing, formal analysis, review and editing, Adita Afrin Oishi: writing, formal analysis, review and editing, Debashis Roy: review and editing, formal analysis, Ali Shokuhi Rad:review, Md. Mehade Hasan: visualization, writing—review and editing, supervision.

Corresponding author

Correspondence to Md. Mehade Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Dhali, P., Oishi, A.A. et al. Adsorption behavior of hydrogen selenide gas on the surfaces of pristine and Ni-doped X12Y12 (X=Al, B and Y=N, P) nano-cages: a first-principles study. Struct Chem 34, 1439–1456 (2023). https://doi.org/10.1007/s11224-022-02105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02105-9

Keywords

Navigation