Skip to main content
Log in

Exploring trimetallic clusters containing alkali and alkaline earth metal atoms with high activity for nitrogen activation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Activation of dinitrogen (N2) is the critical step in nitrogen reduction reaction (NRR) in ammonia synthesis. In this paper, reaction mechanisms of N2 activation on trimetallic clusters Mo2M (M = Li, Na, K, Mg, and Ca) and Mo3−xCax (x = 2–3) were systematically studied by density functional theory calculations. Unlike Mo2 which is inert to N2, clusters with alkali or alkaline earth metal atoms have much higher reactivity toward N2 in terms of both thermodynamics and kinetics. Particularly, in one reaction path of N2 with MoCa2, all the intermediates and transition states are well below the energy sum of the reactants, indicating that the dissociation of N2 on MoCa2 can take place spontaneously in gas-phase reactions. N2 transfers on clusters with different coordination modes, and the N−N bond is gradually activated. When N2 is bonded with three metal atoms with end-on: side-on: side-on coordination mode, it is fully activated and easily dissociated into two adsorbed N atoms. These results may serve as a prototype to design single-cluster catalysts with a trimetallic center for nitrogen activation and conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

Code availability

Not applicable.

References

  1. Erisman J-W, Sutton M-A, Galloway J, Klimont Z, Winiwarter W (2008) Nat Ggosci 1:636–639

    Article  CAS  Google Scholar 

  2. Guo J, Chen P (2017) Chem 3:709–712

    Article  CAS  Google Scholar 

  3. Canfield D-E, Glazer A-N, Falkowski P-G (2010) Science 330:192–196

    Article  CAS  Google Scholar 

  4. Jia H-P, Quadrelli E-A (2014) Chem Soc Rev 43:547–564

    Article  CAS  Google Scholar 

  5. Cheng Q (2008) J Integr Plant Biol 50:786–798

    Article  CAS  Google Scholar 

  6. Thamdrup B (2012) Annu Rev Ecol Evol S 43:407–428

    Article  Google Scholar 

  7. Shilov A-E (2003) Russ Chem Bull 52:2555–2562

    Article  CAS  Google Scholar 

  8. Himmel H-J, Reiher M (2006) Angew Chem Int Ed 45:6264–6288

    Article  CAS  Google Scholar 

  9. Schlögl R (2003) Angew Chem Int Ed 42:2004–2008

    Article  Google Scholar 

  10. Schlögl R (2008) In: Ertl H-K-G, Scheth F, Weitkamp J (Eds) Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim, pp 2501–2575

  11. Honkala K (2005) Science 307:555–558

    Article  CAS  Google Scholar 

  12. Logadóttir Á, Nørskov J-K (2003) J Catal 220:273–279

    Article  Google Scholar 

  13. Ertl G, Lee S-B, Weiss M (1982) Surf Sci 114:515–526

    Article  CAS  Google Scholar 

  14. Fryzuk M-D, Johnson S-A (2000) Coord Chem Rev 200–202:379–409

    Article  Google Scholar 

  15. Cherkasov N, Ibhadon A-O, Fitzpatrick P (2015) Chem Eng Process 90:24–33

    Article  CAS  Google Scholar 

  16. Chen J-G, Crooks R-M, Seefeldt L-C, Bren K-L, Bullock R-M, Darensbourg M-Y, Holland P-L, Hoffman B, Janik M-J, Jones A-K, Kanatzidis M-G, King P, Lancaster K-M, Lymar S-V, Pfromm P, Schneider W-F, Schrock R-R (2018) Science 360:eaar6611

  17. Qiao B, Wang A, Yang X, Allard L-F, Jiang Z, Cui Y, Liu J, Li J, Zhang T (2011) Nat Chem 3:634–641

    Article  CAS  Google Scholar 

  18. Yang W, Zhao M, Ding X-L, Ma K, Wu C, Gates I-D, Gao Z (2020) Phys Chem Chem Phys 22:3983–3989

    Article  CAS  Google Scholar 

  19. Gao Z-Y, Yang W-J, Ding X-L, Lv G, Yan W-P (2018) Phys Chem Chem Phys 20:7333–7341

    Article  CAS  Google Scholar 

  20. Wang D, Ding X-L, Liao H-L, Dai J-Y (2019) Acta Phys-Chim Sin 35:1005–1013

    Article  CAS  Google Scholar 

  21. Chen Z-W, Yan J-M, Jiang Q (2018) Small Methods 3:1800291

    Article  Google Scholar 

  22. Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S (2020) J Am Chem Soc 142:5709–5721

    Article  CAS  Google Scholar 

  23. Liu J-C, Ma X-L, Li Y, Wang Y-G, Xiao H, Li J (2018) Nat Commun 9:1610

    Article  Google Scholar 

  24. Ma X-L, Liu J-C, Xiao H, Li J (2018) J Am Chem Soc 140:46–49

    Article  CAS  Google Scholar 

  25. Lang S-M, Bernhardt T-M (2012) Phys Chem Chem Phys 14:9255–9269

    Article  CAS  Google Scholar 

  26. O’Hair R-A-J, Khairallah G-N (2004) J Cluster Sci 15:331–363

    Article  Google Scholar 

  27. Schwarz H (2017) Catal Sci Technol 7:4302–4314

    Article  CAS  Google Scholar 

  28. Yin S, Bernstein E-R (2012) Int J Mass Spectrom 321:49–65

    Article  Google Scholar 

  29. Liu J (2017) ACS Catal 7:34–59

    Article  CAS  Google Scholar 

  30. Sugawara K-i, Yamaguchi W, Shimoi Y, Murakami J (2017) Chem Phys Lett 667:267–271

    Article  CAS  Google Scholar 

  31. Kumar D, Pal S, Krishnamurty S (2016) Phys Chem Chem Phys 18:27721–27727

    Article  CAS  Google Scholar 

  32. Kerpal C, Harding D-J, Lyon J-T, Meijer G, Fielicke A (2013) J Phys Chem C 117:12153–12158

    Article  CAS  Google Scholar 

  33. Geng C, Li J, Weiske T, Schwarz H (2018) Proc Natl Acad Sci USA 115:11680–11687

    Article  CAS  Google Scholar 

  34. Dillinger S, Mohrbach J, Niedner-Schatteburg G (2017) J Chem Phys 147:184305

  35. Wang Y-Y, Ding X-L, Gurti J-I, Chen Y, Li W, Wang X, Wang W-J, Deng J-J (2021) ChemPhysChem 22:1645–1654

    Article  CAS  Google Scholar 

  36. Ding X, Yang J, Hou JG, Zhu Q (2005) J Mol Struc (THEOCHEM) 755:9–17

    Article  CAS  Google Scholar 

  37. Mou L-H, Liu Q-Y, Zhang T, Li Z-Y, He S-G (2018) J Phys Chem A 122:3489–3495

    Article  CAS  Google Scholar 

  38. Li Z-Y, Mou L-H, Wei G-P, Ren Y, Zhang M-Q, Liu Q-Y, He S-G (2019) Inorg Chem 58:4701–4705

    Article  CAS  Google Scholar 

  39. Geng C, Li J, Weiske T, Schwarz H (2019) Proc Natl Acad Sci USA 116:21416–21420

    Article  CAS  Google Scholar 

  40. Cheng X, Li Z-Y, Mou L-H, Ren Y, Liu Q-Y, Ding X-L, He S-G (2019) Chem Eur J 25:16523–16527

    Article  CAS  Google Scholar 

  41. Hu J-C, Xu L-L, Li H-F, Valdivielso DY, Fielicke A, He S-G, Ma J-B (2017) Phys Chem Chem Phys 19:3136–3142

    Article  CAS  Google Scholar 

  42. Xue W, Yin S, Ding X-L, He S-G, Ge M-F (2009) J Phys Chem A 113:5302–5309

    Article  CAS  Google Scholar 

  43. Wang C, Zhuang J, Wang G, Chen M, Zhao Y, Zheng X, Zhou M (2010) J Phys Chem A 114:8083–8089

    Article  CAS  Google Scholar 

  44. Zhou M, Zhuang J, Zhou Z, Li ZH, Zhao Y, Zheng X, Fan K (2011) J Phys Chem A 115:6551–6558

    Article  CAS  Google Scholar 

  45. Zhou M, Jin X, Gong Y, Li J (2007) Angew Chem Int Ed 46:2911–2914

    Article  CAS  Google Scholar 

  46. Gong Y, Zhao Y-Y, Zhou M-F (2007) J Phys Chem A 111:6204–6207

    Article  CAS  Google Scholar 

  47. Mafuné F, Tawaraya Y, Kudoh S (2016) J Phys Chem A 120:4089–4095

    Article  Google Scholar 

  48. Jiang G-D, Mou L-H, Chen J-J, Li Z-Y, He S-G (2020) J Phys Chem A 124:7749–7755

    Article  CAS  Google Scholar 

  49. Li Z-Y, Li Y, Mou L-H, Chen J-J, Liu Q-Y, He S-G, Chen H (2020) J Am Chem Soc 142:10747–10754

    Article  CAS  Google Scholar 

  50. Mou L-H, Li Y, Li Z-Y, Liu Q-Y, Ren Y, Chen H, He S-G (2020) J Phys Chem Lett 11:9990–9994

    Article  CAS  Google Scholar 

  51. Wang Y-Y, Ding X-L, Gurti JI, Chen Y, Huang X-Q, Li W, Wang X (2022) ChemPhysChem 23:e202100771

    CAS  Google Scholar 

  52. Chen Z-W, Chen L-X, Jiang M, Chen D-C, Wang Z-L, Yao X, Singh C-V, Jiang Q (2020) J Mater Chem A 8:15086–15093

    Article  CAS  Google Scholar 

  53. Zhao Y, Cui J-T, Wang M, Valdivielso D-Y, Fielicke A, Hu L-R, Cheng X, Liu Q-Y, Li Z-Y, He S-G, Ma J-B (2019) J Am Chem Soc 141:12592–12600

    Article  CAS  Google Scholar 

  54. Zheng J, Liao F, Wu S, Jones G, Chen T, Fellowes J, Sudmeier T, McPherson I-J, Wilkinson I, Tsang S-C-E (2019) Angew Chem Int Ed 58:17335–17341

    Article  CAS  Google Scholar 

  55. Bettens T, Pan S, Proft F-D, Frenking G, Geerlings P (2020) Chem Eur J 26:12785–12793

    Article  CAS  Google Scholar 

  56. Frisch M-J, Trucks G-W, Schlegel H-B, Scuseria G-E, Robb M-A, Cheeseman J-R, Scalmani G, Barone V, Mennucci B, Petersson G-A, Nakatsuji H, Caricato M, Li X, Hratchian H-P, Izmaylov A-F, Bloino J, Zheng G, Sonnenberg J-L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J-A, Jr, Peralta J-E, Ogliaro F, Bearpark M, Heyd J-J, Brothers E, Kudin K-N, Staroverov V-N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A-P, Burant J-C, Iyengar S-S, Tomasi J, Cossi M, Rega N, Millam J-M, Klene M, Knox J-E, Cross J-B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R-E, Yazyev O, Austin A-J, Cammi R, Promelli C, Ochterski J-W, Martin R-L, Morokuma K, Zakrzewski V-G, Voth G 26 A, Salvador P, Dannenberg J-J, Dapprich S, Daniels A-D, Farkas O, Foresman J-B, Ortiz J-V, Cioslowski J, Fox D-J (2009) Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT

  57. Tao J, Perdew J-P, Staroverov V-N, Scuseria G-E (2003) Phys Rev Lett 91:146401

  58. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  59. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  60. Lu T, Chen F-W (2012) J Comput Chem 33:580–592

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (92161115, 61704054), the Fundamental Research Fund for the Central Universities (JB2015RCY03, JB2019MS052, JB2017MS056), and the Beijing Natural Science Foundation (2214064).

Author information

Authors and Affiliations

Authors

Contributions

Xue-Qian Huang: writing – original draft, investigation. Xun-Lei Ding: supervision, project administration, writing – review and editing. Jian Wang: data curation, visualization. Ya-Ya Wang: conceptualization, review. Joseph Israel Gurti: data curation, review. Yan Chen: data curation, validation. Meng-Meng Wang: validation, review. Wei Li: conceptualization, project administration. Xin Wang: methodology, validation.

Corresponding authors

Correspondence to Xun-Lei Ding or Wei Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3702 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XQ., Ding, XL., Wang, J. et al. Exploring trimetallic clusters containing alkali and alkaline earth metal atoms with high activity for nitrogen activation. Struct Chem 34, 87–96 (2023). https://doi.org/10.1007/s11224-022-01919-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01919-x

Keywords

Navigation