Skip to main content
Log in

Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Antioxidants are molecules that help the human body to fight oxidative stress caused by excess free radicals that trigger a number of diseases. Understanding the structure–activity relationship of antioxidants and their mechanisms of action is important for designing more powerful antioxidants. Polyphenols from Vitis vinifera L. have shown several biological activities among which antioxidant activity. Among polyphenolic compounds having potent biological activities, we find resveratrol (RSV) which is a stilbene and epigallocatechin gallate (EGCg) and epicatechin (EC) which are catechins or flavanols. We report here a comparative study of the antioxidant potential of EGCg and EC as compared to RSV. The most favorable mechanism by which each molecule exerts the antioxidant activity is determined. Ascorbic acid (AA) was included as a reference. DPPH and FRAP assays were used for experimental evaluation of antioxidant activity and for theoretical calculations, density functional theory (DFT) method was chosen. Three mechanisms were investigated: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET). Calculated thermodynamic parameters correlate well with percentage inhibition (I%) and half maximal inhibitory concentration (IC50) values given by the DPPH test. Both experimental and theoretical approaches showed that EGCg is more potent antioxidant than EC and RSV. The most preferential sites are gallate moiety and 4′-OH in EGCg and OH sites of the B ring in EC. The pKa values confirm this finding. All proposed mechanisms are favored for EGCg, and SET-PT is preferred antioxidant mechanism for EC and it is the most suitable in the first step for RSV. Flavanols are more potent antioxidants than the stilbene, RSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rahardiyan D (2019). Food Res 3:1–6

    Article  Google Scholar 

  2. Vestergaard M, Ingmer H (2019). Int J Antimicrob Agents 53:716–723

    Article  CAS  PubMed  Google Scholar 

  3. Jamróz E, Kulawik P, Krzyściak P, Talaga-Ćwiertnia K, Juszczak L (2019). Int J Biol Macromol 122:745–757

    Article  PubMed  CAS  Google Scholar 

  4. Paulo L, Ferreira S, Gallardo E, Queiroz JA, Domingues F (2010). World J Microbiol Biotechnol 26:1533–1538

    Article  CAS  Google Scholar 

  5. Nagaoka S, Nakayama N, Teramae H, Nagashima U (2019). Chem. Phys 522:77–83

    Article  CAS  Google Scholar 

  6. Liu B, Yan W (2019). Food Chem 272:663–669

    Article  CAS  PubMed  Google Scholar 

  7. Iuga C, Alvarez-Idaboy JR, Russo N (2012). J Org Chem 77:3868–3877

    Article  CAS  PubMed  Google Scholar 

  8. Ke F, Zhang M, Qin N, Zhao G, Chu J, Wan X (2019). J Mater Sci 54:10420–10429

    Article  CAS  Google Scholar 

  9. Gianchecchi E, Fierabracci A (2020). Antioxidants 9:91–107

    Article  CAS  PubMed Central  Google Scholar 

  10. Natarajan SB, Chandran SP, Vinukonda A, Rajan S (2019). Asian J Pharm Clin Res 12:1–7

    Article  CAS  Google Scholar 

  11. Farzaei M H, Bahramsoltani R, Abbasabadi Z, Braidy N, Nabavi S M (2018) J Cell Physiol 1–13

  12. Pervin M, Unno K, Takagaki A, Isemura M (2019). Int J Mol Sci 20:3630

    Article  CAS  PubMed Central  Google Scholar 

  13. Pérez-González A, Rebollar-Zepeda AM, León-Carmona JR, Galano A (2012). J Mex Chem Soc 56:241–249

    Google Scholar 

  14. Rice-Evans CA, Miller NJ, Paganga G (1996). Free Radical Biol Med 20:933–956

    Article  CAS  Google Scholar 

  15. Bendary E, Francis RR, Ali HMG, Sarwat MI, El Hady S (2013). Ann Agric Sci 58:173–181

    Article  Google Scholar 

  16. Anouar E, Raweh S, Bayach I, Taha M, Baharudin MS, Meo FD, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P (2013). J Comput Aided Mol Des 27:951–964

    Article  CAS  Google Scholar 

  17. Kongpichitchoke T, Hsu J, Huang T (2015). J Agric Food Chem 63:4580–4586

    Article  CAS  PubMed  Google Scholar 

  18. Shahidi F, Ambigaipalan P (2015). J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  19. Uranga JG, Podio NS, Wunderlin DA, SantiagoA N (2016). ChemistrySelect 1:4113–4120

    Article  CAS  Google Scholar 

  20. Caoa H, Chenga W, Lia C, Pana X, Xiea X, Lia T (2005). J Mol Struct 719:177–183

    Article  CAS  Google Scholar 

  21. Sadasivam K, Kumaresan R (2011). Mol Phys 109:839–852

    Article  CAS  Google Scholar 

  22. Sarkar A, Middya TR, Jana AD (2012). J Mol Model 18:2621–2631

    Article  CAS  PubMed  Google Scholar 

  23. Anouar E, Ali Shah SA, Hassan NB, El Moussaoui N, Ahmad R, Zulkefeli F, Weber JF (2014). Molecules 19:3489–3507

    Article  PubMed Central  CAS  Google Scholar 

  24. Muglu H, Çavus MS¸ Bakır T, Yakan H (2019) J Mol Struct 1196: 819-827.

    Article  CAS  Google Scholar 

  25. Mohajeri A, Asemani SS (2009). J Mol Struct 930:15–20

    Article  CAS  Google Scholar 

  26. Wang J, Tang H, Hou B, Zhang P, Wang Q, Zhang B, Huang Y, Wang Y, Xiang Z, Zi C, Wang X, Sheng J (2017). RSC Adv 7:54136–54141

    Article  CAS  Google Scholar 

  27. Bougandoura N, Bendimerad N (2013) NATEC 14–19

  28. Ferreira ICFR, Aires E, Barreira JCM, Estevinho LM (2009). Food Chem 114:1438–1443

    Article  CAS  Google Scholar 

  29. Anitha S, Krishnan S, Senthilkumar K, Sasirekha V (2020). Mol Phys:118

  30. Josefredo R, Pliego J (2003). Chem Phys Lett 367:145–149

    Article  Google Scholar 

  31. Kelly CP, Cramer CJ, Truhlar DG (2005). J Chem Theory Comput 1:1133–1152

    Article  CAS  PubMed  Google Scholar 

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli JW, Ochterski C, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) GAUSSIAN 09 A. Program package Gaussian Inc., Wallingford

    Google Scholar 

  33. He J, Xu L, Yang L, Wang X (2018). Med Sci Monit. 24:8198–8206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W (1999). Biochim Biophys Acta 1427:13–23

    Article  CAS  PubMed  Google Scholar 

  35. Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996). Free Radical Biol Med 21:895–902

    Article  CAS  Google Scholar 

  36. Zaiter A, Becker L, Karam M, Dicko A (2016). J Food Sci Technol 53:2025–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grzesik M, Naparło K, Bartosz G, Sadowska-Bartosz I (2018). Food Chem 241:480–492

    Article  CAS  PubMed  Google Scholar 

  38. Lu L, Zhu S, Zhang H, Zhang S (2013). Comput Theor Chem 1019:39–47

    Article  CAS  Google Scholar 

  39. Nazarparvar E, Zahedi M, Klein E (2012). J Org Chem 77:10093–10104

    Article  CAS  PubMed  Google Scholar 

  40. Thi TP, The SN (2020). J Chem 2020:1–15

    Google Scholar 

  41. Jabeen H, Saleemia S, Razzaq H, Yaqub A, Shakoor S, Qureshi R (2018). J Photochem Photobiol B Biol 180:268–275

    Article  CAS  Google Scholar 

  42. Albuquerque VR, Malcher SN, Amado LL, Coleman DM, dos Santos CD, Sa Borges R, Valente SSA, Valente CV, Monteiro MC (2015). PLOS One 10:e0134768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Leopoldini M, Russo N, Toscano M (2011). Food Chem 125:288–306

    Article  CAS  Google Scholar 

  44. Mikulski D, Górniak R, Molski M (2010). Eur J Med Chem 45:1015–1027

    Article  CAS  PubMed  Google Scholar 

  45. Mikulski D, Szelag M, Molski M, Górniak R (2010). Theor Chem 951:37–48

  46. Benayahoum A, Amira-Guebailia H, Houache O (2014). Comput Theor Chem 1037:1–9

    Article  CAS  Google Scholar 

  47. Mikulski D, Molski M (2010). Eur J Med Chem 45:2366–2380

    Article  CAS  PubMed  Google Scholar 

  48. Fukuhara K, Nakanishi I, Matsuoka A, Matsumura T, Honda S, Hayashi M, Ozawa T, Miyata N, Saito S, Ikota N, Okuda H (2008). Chem Res Toxicol 21:282–287

    Article  CAS  PubMed  Google Scholar 

  49. Vagánek A, Rimarčík J, Lukeš V, Klein E (2006). Biochim Biophys Acta 1757:969–980

    Article  CAS  Google Scholar 

  50. Zheng Y, Chen D, Deng G, Guo R, Fu Z (2018). Phytochemistry 156:184–192

    Article  CAS  PubMed  Google Scholar 

  51. Lengryel J, Rimarčík J, Vagánek A, Klein E (2013). Phys Chem Chem Phys 15:10895–10903

    Article  CAS  Google Scholar 

  52. Xue Y, Zheng Y, An L, Dou Y, Liu Y (2014). Food Chem 151:198–206

    Article  CAS  PubMed  Google Scholar 

  53. Sadasivam K, Kumarisan R (2011). Comput Theor Chem 963:227–235

    Article  CAS  Google Scholar 

  54. Queiroz AN, Gomes BAQ, Moraes Jr WM, Borges RS (2009). Eur J Med Chem 44:1644–1649

    Article  CAS  PubMed  Google Scholar 

  55. Zhou C, Deng F, Li T (2003) Bioorg Cao H, Pan X, Li C Med Chem Lett 13: 1869-1871

    Article  CAS  Google Scholar 

  56. Benayahoum A, Amira-Guebailia H, Houache O (2013). J Mol Model 19:2285–2298

    Article  CAS  PubMed  Google Scholar 

  57. Liu L, Li Y, Oguzie E, Wang F (2015). J Ind Eng Chem 26:18 Chidiebere 2-192

    Google Scholar 

  58. Lewars EG (2003) Kluwer Academic Publishers Norwell

  59. Hatch FT, Lightstone FC, Colvein ME (2000). Environ Mol Mutagen 35:279–299

    Article  CAS  PubMed  Google Scholar 

  60. Akhtari K, Hassanzadeh K, Fakhraei B, Fakhraei N, Hassanzadeh H, Akhtari G, Zarei SA, Hassanzadeh K (2015). Monatsh Chem 146:601–611

    Article  CAS  Google Scholar 

  61. Filatov M, Cremer D (2005). J Chem Phys 123:124101–124107

    Article  PubMed  CAS  Google Scholar 

  62. Giner E, Angeli C (2016). J Chem Phys 144:104104-1–104104-12

    Google Scholar 

  63. Macetti G, Presti LL, Gatti C (2018). J Comput Chem 39:587–603

    Article  CAS  PubMed  Google Scholar 

  64. Hubschle CB, Smaalen SV (2017). J Appl Cryst 50:1627–1636

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y. Boulmokh: investigation, methodology, writing, original draft, review, and editing.

K. Belguidoum: investigation, original draft of the experimental part, and review.

F. Meddour: contribution in the theoretical part.

H. Amira-Guebailia: supervision, investigation, methodology, original draft, writing, and review.

Corresponding author

Correspondence to Yamina Boulmokh.

Ethics declarations

Consent to publish

All authors whose names appear on the submission approved the version to be published.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulmokh, Y., Belguidoum, K., Meddour, F. et al. Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem 32, 1907–1923 (2021). https://doi.org/10.1007/s11224-021-01763-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01763-5

Keywords

Navigation