Skip to main content
Log in

Electronic and vibrational properties of pristine and Cd, Si, Zn and Ge-doped InN nanosheet: a first principle study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Within density functional theory, structural, electronic and vibrational properties of pure and Cd, Si, Zn and Ge-doped InN nanosheet have been investigated using B3LYP/LanL2DZ method. The structural stability is described by using calculated energy and vibrational study. The HOMO–LUMO gap, ionisation potential (IP), electron affinity (EA) and hardness of the optimized nanosheet are discussed. The present study implying that the variation in the energy gap due to the impurity substitution could be attributed to sensitivity of InN nanosheet towards a specific dopant signifies that we can tune the electronic properties by applying particular impurity. The study of vibrational frequency ensures that the structures are located at minimum position on potential energy surface (PES). The IR and Raman activity spectrum are evaluated. High value of IP and EA infers pleasant condition for chemical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. O’Leary SK, Foutz BE, Shur MS, Eastman LF (2006). Appl Phys Lett 88(15):152113

    Article  Google Scholar 

  2. Wang S, Liu H, Chen Q, Zhang H (2016). J Mater Sci Mater Electron 27:11353–11357

    Article  CAS  Google Scholar 

  3. Bour DP, Nickel NM, Van de Walle CG, Kneissl MS, Krusor BS, Mei P, Johnson NM (2000). Appl Phys Lett 76:2182–2184

    Article  CAS  Google Scholar 

  4. Kazazis SA, Papadomanolaki E, Androulidaki M, Tsagaraki K, Kostopoulos A, Aperathitis E, Iliopoulos E (2016). Thin Solid Films 611:46–51

    Article  CAS  Google Scholar 

  5. Yamada K, Asahi H, Tampo H, Imanishi Y, Ohnishi K, Asami K (2001). Appl Phys Lett 78:2849–2851

    Article  CAS  Google Scholar 

  6. Kendrick CE, Anderson PA, Kinsey RJ, Kennedy VJ, Markwitz A, Asadov A., ... Durbin SM. (2005) Phys Status solidi C 2:2236–2239

  7. Beierlein T, Strite S, Dommann A, Smith D (1997). J Mater Res Soc Internet J Nitride Semicond Res 2:e29

    Google Scholar 

  8. Argoitia A, Hayman CC, Angus JC, Wang L, Dyck JS, Kash K (1997). Appl Phys Lett 70:179–181

    Article  CAS  Google Scholar 

  9. Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009). Phys Rev B 80:155453

    Article  Google Scholar 

  10. Chen D, Zhang X, Tang J, Cui Z, Cui H (2019). J Hazard Mater 363:346–357

    Article  CAS  Google Scholar 

  11. Guo Y, Zhang Y, Wu W, Liu Y, Zhou Z (2018). Appl Surf Sci 455:106–114

    Article  CAS  Google Scholar 

  12. Stampfl C, Van de Walle CG, Vogel D, Krüger P, Pollmann (2000). Phys Rev B 61:R7846

    Article  CAS  Google Scholar 

  13. Sarmazdeh MM, Mendi RT, Zelati A, Boochani A, Nofeli F (2016). Int J Mod Phys B 30:1650117

    Article  CAS  Google Scholar 

  14. Morkoç H (2001). J Mater Sci Mater Electron 12:677–695

    Article  Google Scholar 

  15. Dietz N, Alevli MUST, Woods V, Strassburg M, Kang H, Ferguson IT (2005). Phys Status Solidi B 242:2985–2994

    Article  CAS  Google Scholar 

  16. Sprenger JK, Cavanagh AS, Sun H, Wahl KJ, Roshko A, George SM (2016). Chem Mater 28:5282–5294

    Article  CAS  Google Scholar 

  17. Xu HY, Liu Z, Zhang XT, Hark SK (2007). Appl Phys Lett 90:113105

    Article  Google Scholar 

  18. Zhao S, Le BH, Liu DP, Liu XD, Kibria MG, Szkopek T, Mi Z (2013). Nano lett 13:5509–5513

    Article  CAS  Google Scholar 

  19. Zhao S, Fathololoumi S, Bevan KH, Liu DP, Kibria MG, Li Q, Mi Z (2012). Nano lett 12:2877–2882

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D02. Gaussian, Wallingford

    Google Scholar 

  21. Becke ADJ (1993). Chem Phys 98:5648–5652

    CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  23. Becke AD (1988). Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  24. Hay PJ, Wadt WR (1985). J Chem Phys 82:270

    Article  CAS  Google Scholar 

  25. Chandiramouli R, Jeyaprakash BG (2014). Eur Phys J D 68:8–16

    Article  Google Scholar 

  26. O’boyle NM, Tenderholt AL, Langner KM (2008). J Comput Chem 29:839–845

    Article  Google Scholar 

  27. Pearson RG (2005). J Chem Sci 117:369–377

    Article  CAS  Google Scholar 

  28. Suh YJ, Chae JW, Jang HD, Cho K (2015). Chem Eng J 273:401–405

    Article  CAS  Google Scholar 

  29. Koopmans T (1934). Physica 1:104–113

    Article  Google Scholar 

  30. Li SS (2012) Semiconductor physical electronics. Springer Science & Business Media

Download references

Funding

The authors received financial assistance from DST, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

The problem was conceptualised by Amarjyoti Das. Amarjyoti Das did the investigation and write the original draft and R. K. Yadav supervised the present work. Both are involved in the analysis of the results predicted.

Corresponding author

Correspondence to R. K. Yadav.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Yadav, R.K. Electronic and vibrational properties of pristine and Cd, Si, Zn and Ge-doped InN nanosheet: a first principle study. Struct Chem 32, 379–386 (2021). https://doi.org/10.1007/s11224-020-01632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01632-7

Keywords

Navigation