Skip to main content
Log in

Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T = Si, Ge, Sn)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The bimolecular and termolecular complexes involving F2TO (T = Si, Ge, Sn) and XCN/BrY (X = H, Br, CH3, and PH2; Y = F, CN, OH, and H) were designed to form the π-hole tetrel bonds and different sorts of σ-hole interactions, to investigate the influence of π-hole tetrel bonds on the σ-hole interactions. The effect of π-hole tetrel bonds on the σ-hole interactions in three series HCN···F2TO···HCN, HCN···F2SiO···XCN, and HCN···F2SiO···BrY is reflected by the changes in geometry, interaction energy, and charge transfer. With the formation of π-hole tetrel bond, the VS, min value outside the oxygen atom of F2TO becomes more negative, resulting in a stronger σ-hole interaction. Comparing with the bimolecular complex, the σ-hole binding distance and binding angle in the corresponding termolecular complex changes a lot, with the formation of another tetrel bond. The σ-hole interaction energy is enhanced more than 100% in most of the complexes with the exception of HCN···F2SiO···BrCN. The enhancing effect is related to the strength of π-hole tetrel bond, but has no relationship with the strength of σ-hole interactions. In particular, the σ-hole tetrel bond between F2SiO and CH3CN varies from a weak tetrel bond in the bimolecular complex F2SiO···CH3CN to a moderate hydrogen bond in the termolecular complex HCN···F2SiO···CH3CN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hobza P, Müller-Dethlefs K (2009) Chapter 1: Non-covalent interactions: theory and experiment. RSC Theoretical and Computational Chemistry Series No. 2. Royal Society of Chemistry, London

    Google Scholar 

  2. Stone AJ (2013) The theory of intermolecular forces. Oxford University Press, United Kingdom

    Book  Google Scholar 

  3. Gilli G, Gilli P (2009) The nature of the hydrogen bond. Oxford University Press, Oxford, p 313

    Book  Google Scholar 

  4. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005). Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  5. Clark T, Hennemann M, Murray JS, Politzer P (2007). J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  6. Politzer P, Lane P, Concha MC, Ma YG, Murray JS (2007). J Mol Model 13:305–311

    Article  CAS  Google Scholar 

  7. Murray JS, Lane P, Politzer P (2009). J Mol Model 15:723–729

    Article  CAS  Google Scholar 

  8. Politzer P, Murray JS, Clark T (2010). Phys Chem Chem Phys 12:7748–7757

    Article  CAS  Google Scholar 

  9. Murray JS, Lane P, Clark T, Riley KE, Politzer P (2012). J Mol Model 18:541–548

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS, Clark T (2013). Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  11. Politzer P, Murray JS (2017). J Comput Chem 39:464–471

    Article  Google Scholar 

  12. Wang WZ, Ji BM, Zhang Y (2009). J Phys Chem A 113:8132–8135

    Article  Google Scholar 

  13. Azofra LM, Alkorta I, Scheiner S (2014). Theor Chem Accounts 133:1586–1593

    Article  Google Scholar 

  14. Pascoe DJ, Ling KB, Cockroft SL (2017). J Am Chem Soc 139:15160–15167

    Article  CAS  Google Scholar 

  15. Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011). Chem Eur J 17:6034–6038

    Article  CAS  Google Scholar 

  16. Scheiner S (2013). Acc Chem Res 46:280–288

    Article  CAS  Google Scholar 

  17. Bauzá A, Ramis R, Frontera A (2014). J Phys Chem A 118:2827–2834

    Article  Google Scholar 

  18. Bauzá A, Mooibroek TJ, Frontera A (2015). Chem Commun 51:1491–1493

    Article  Google Scholar 

  19. Bauzá A, Mooibroek TJ, Frontera A (2013). Angew Chem Int Ed 52:12317–12321

    Article  Google Scholar 

  20. Bauzá A, Mooibroek TJ, Frontera A (2016). Chem Rec 16:473–487

    Article  Google Scholar 

  21. Scheiner S (2017). J Phys Chem A 121:5561–5568

    Article  CAS  Google Scholar 

  22. Shen SJ, Zeng YL, Li XY, Meng LP, Zhang XY (2017). Int J Quantum Chem 118:e25521–e25532

    Article  Google Scholar 

  23. Grabowski SJ (2015). ChemPhysChem 16:1470–1479

    Article  CAS  Google Scholar 

  24. Gao L, Zeng YL, Zhang XY, Meng LP (2016). J Comput Chem 37:1321–1327

    Article  CAS  Google Scholar 

  25. Grabowski SJ (2018). J Comput Chem 39:472–480

    Article  CAS  Google Scholar 

  26. Bauzá A, Frontera A (2015). Angew Chem Int Ed 54:7340–7343

    Article  Google Scholar 

  27. Bauzá A, Frontera A (2015). ChemPhysChem 16:3625–3630

    Article  Google Scholar 

  28. Frontera A, Bauzá A (2017). Phys Chem Chem Phys 19:30063–30068

    Article  CAS  Google Scholar 

  29. Clark T, Murray JS, Politzer P (2018). Phys Chem Chem Phys 20:30076–30082

    Article  CAS  Google Scholar 

  30. Clark T, Hesselmann A (2018). Phys Chem Chem Phys 20:22849–22855

    Article  CAS  Google Scholar 

  31. Bauzá A, Mooibroek TJ, Frontera A (2015). ChemPhysChem 16:2496–2517

    Article  Google Scholar 

  32. Bauzá A, Frontera A (2015). Chem Phys Chem 16:3108–3113

    Article  Google Scholar 

  33. Wang H, Wang W, Jin W (2016). Chem Rev 116:5072–5104

    Article  CAS  Google Scholar 

  34. Lehn JM (2002). Proc Natl Acad Sci U S A 99:4763–4768

    Article  CAS  Google Scholar 

  35. Mahadevi AS, Sastry GN (2016). Chem Rev 116:2775–2825

    Article  CAS  Google Scholar 

  36. Grabowski SJ (2014). Phys Chem Chem Phys 16:1824–1834

    Article  CAS  Google Scholar 

  37. Gargari MS, Stilinović V, Bauzá A, Frontera A, McArdle P, Derveer DV, Ng SW, Mahmoudi G (2015). Chem Eur J 21:17951–17958

    Article  Google Scholar 

  38. Mahmoudi G, Bauzá A, Amini M, Molins E, Mague JT, Frontera A (2016). Dalton Trans 45:10708–10716

    Article  CAS  Google Scholar 

  39. Marín-Luna M, Alkorta I, Elguero J (2016). J Phys Chem A 120:648–656

    Article  Google Scholar 

  40. Gholipour A (2018). Struct Chem 29:1255–126336

    Article  CAS  Google Scholar 

  41. McDowell SAC, Joseph JA (2014). Phys Chem Chem Phys 16:10854–10860

    Article  CAS  Google Scholar 

  42. Esrafili MD, Nurazar R, Mohammadian-Sabet F (2015). Mol Phys 113:3703–3711

    Article  CAS  Google Scholar 

  43. Yourdkhani S, Korona T, Hadipour NL (2015). J Comput Chem 36:2412–2428

    Article  CAS  Google Scholar 

  44. Wei Y, Cheng J, Li W, Li Q (2017). RSC Adv 7:46321–46328

    Article  CAS  Google Scholar 

  45. Xu H, Cheng J, Yang X, Liu Z, Bo X, Li Q (2017). RSC Adv 7:21713–21720

    Article  CAS  Google Scholar 

  46. Xu HL, Cheng JB, Yang X, Liu ZB, Li WZ, Li QM (2017). ChemPhysChem 18:2442–2450

    Article  CAS  Google Scholar 

  47. Li W, Zeng Y, Li X, Sun Z, Meng L (2016). Phys Chem Chem Phys 18:24672–24680

    Article  CAS  Google Scholar 

  48. Tang Q, Li Q (2014). Comput Theor Chem 1050:51–57

    Article  CAS  Google Scholar 

  49. Guo X, Liu YW, Li QZ, Li WZ, Cheng JB (2015). Chem Phys Lett 620:7–12

    Article  CAS  Google Scholar 

  50. Vatanparast M, Parvini E, Bahadori A (2016). Mol Phys 114:1478–1484

    Article  CAS  Google Scholar 

  51. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, revision A. 02. Gaussian, Wallingford

    Google Scholar 

  52. Boys SF, Bernardi FD (1970). Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  53. Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P (2010). J Mol Model 16:1679–1691

    Article  CAS  Google Scholar 

  54. Bader RFW (1991). Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  55. Becke A, Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Wiley, New York

    Google Scholar 

  56. Biegler-Kôning FJ, Derdau R, Bayles D, Bader RFW (2002) AIM2000, version 2.0. University of Applied Science, Bielefeld

    Google Scholar 

  57. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010). J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  58. Contreras-Garcia J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, Yang W (2011). J Chem Theory Comput 7:625–632

    Article  CAS  Google Scholar 

  59. Lu T, Chen F (2012). J Comput Chem 33:580–592

    Article  Google Scholar 

  60. Humphrey W, Dalke A, Schulten K (1996). J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  61. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  62. Su P, Li H (2009). J Chem Phys 131:014102

    Article  Google Scholar 

  63. Michael WS, Kim KB, Jerry AB et al (1993). J Comput Chem 14:1347–1363

    Article  Google Scholar 

  64. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011). Angew Chem Int Ed 50:9564–9583

    Article  CAS  Google Scholar 

  65. Frontera A, Gamez P, Mascal M, Mooibroek TJ, Reedijk J (2011). Angew Chem 123:9736–9756

    Article  Google Scholar 

  66. Zhang XY, Zeng YL, Li XY, Meng LP, Zheng SJ (2011). Struct Chem 22:567–576

    Article  CAS  Google Scholar 

  67. Li W, Zeng YL, Li XY, Sun Z, Meng LP (2015). J Comput Chem 36:1349–1358

    Article  CAS  Google Scholar 

  68. Grabowski SJ (2017). Crystals 7:43–56

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Hebei Province (Contract Nos. B2018205198 and B2016205042), the Education Department Foundation of Hebei Province (Contract No. ZD2018066), and the Foundation of Hebei Normal University (Contract No. L2018Z04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueying Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Li, X., Zeng, Y. et al. Enhancing effects of π-hole tetrel bonds on the σ-hole interactions in complexes involving F2TO (T = Si, Ge, Sn). Struct Chem 30, 1301–1313 (2019). https://doi.org/10.1007/s11224-018-1274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1274-2

Keywords

Navigation