Skip to main content
Log in

Solid-state structure by X-ray and 13C CP/MAS NMR of new 6-acetyl-8-bromo-5-O-alkylamino-4,7-dimethylcoumarins

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

6-Acetyl-8-bromo-5-[2-(N,N-dimethylamino)ethoxy)-4,7-dimethylcoumarin (1) and 6-acetyl-8-bromo-5-[2-(N,N-diethylamino)ethoxy)-4,7-dimethylcoumarin (2) were synthesized using microwave conditions. Crystal of 1 was investigated using single-crystal X-ray diffraction at 296 K and 100 K. The crystal undergoes reversible order-disorder, temperature-driven phase transition. The high-temperature form contains two molecules in the asymmetric unit of which one moiety is disordered over two sites. The low-temperature phase is fully ordered and contains four molecules in the asymmetric unit. A complexity of the solid form of 1 is with an agreement with recorded C13 CP/MAS NMR spectrum indicating split of signals. The solid-state structures of 1 and 2 derived from 13C CP/MAS NMR spectra were also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balunas MJ, Kinghorn AD (2005) Life Sci 78:431–441

    Article  CAS  PubMed  Google Scholar 

  2. Jones WP, Chin YW, Kinghorn AD (2006) Curr Drug Targets 7:247–264

    Article  CAS  Google Scholar 

  3. Berger S (1985) Horm Metab Res 17:111–115

    Google Scholar 

  4. Gray AM, Flatt PR (1997) Proc Nutr Soc 56:507–517

    Article  CAS  Google Scholar 

  5. Ostrowska K, Hejchman E, Grzeszczuk D, Kruk N (2013) Farmacja Polska 6:303–310

    Google Scholar 

  6. Ostrowska K, Hejchman E, Grzeszczuk D, Kruk N (2013) Farmacja Współczesna 6:72–79

    Google Scholar 

  7. Marriott KSC, Bartee R, Morrison AZ, Stewart L, Wesby J (2012) Tetrahedron Lett 53:3319–3321

    Article  CAS  PubMed  Google Scholar 

  8. Hejchman E, Ostrowska K, Maciejewska D, Kossakowski J, Courchesne WE (2012) J Pharmacol Exp Ther 343:380–388

    Article  CAS  Google Scholar 

  9. Kossakowski J, Krawiecka M, Kuran B, Stefanska J, Wolska I (2010) Molecules 15:4737–4749

    Article  CAS  Google Scholar 

  10. Kossakowski J, Ostrowska K, Struga M, Stefanska J (2009) Med Chem Res 18:555–565

    Article  CAS  Google Scholar 

  11. Elgamal MHA, Shalaby NMM, Shaban MA (1998) Indian J Chem B 37:662–668

    Google Scholar 

  12. Trykowska Konc J, Hejchman E, Kruszewska H, Wolska I, Maciejewska D (2011) Eur J Med Chem 46:2252–2263

    Article  CAS  Google Scholar 

  13. Barrett MP, Gemmel CG, Suckling CJ (2013) Pharmacol Ther 136:12–23

    Article  Google Scholar 

  14. Geppi M, Mollica G, Borsacchi S, Veracini CA (2008) Appl Spectrosc Rev 43:202–302

    Article  CAS  Google Scholar 

  15. Silva PSP, Ghalib RM, Mehdi SH, Hashim R, Sulaiman O, Silva MR (2011) J Mol Struct 995:66–71

    Article  Google Scholar 

  16. Harris RK, Hodgkinson P, Pickard CJ, Yates JR, Zorin V (2007) Magn Reson Chem 45:174–186

    Article  Google Scholar 

  17. Ostrowska K, Hejchman E, Dobrzycki Ł, Maciejewska D (2015) J Mol Struct 1088:123–128

    Article  CAS  Google Scholar 

  18. Ostrowska K, Maciejewska D, Dobrzycki Ł, Socha P (2016) J Mol Struct 1112:25–32

    Article  CAS  Google Scholar 

  19. APEX2 (2013) Bruker AXS Inc. Madison Wisconsin USA

  20. SAINT (2013) Bruker AXS Inc. Madison Wisconsin USA

  21. SADABS (2012) Bruker AXS Inc. Madison Wisconsin USA

  22. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  23. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  24. International Tables for Crystallography (1992) Ed. Wilson AJC Dordrecht Vol.C

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GB, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci VB, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng JG, Sonnenberg JL, Hada H, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc, Wallingford CT

  26. Dunning Jr TH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  27. Kendall RA, Dunning Jr TH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  28. Woon DE, Dunning Jr TH (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  29. Chai JD, Head-Gordon M (2008) Phys Chem 10:6615–6620

    CAS  Google Scholar 

  30. Dennington R, Keith T, Millam J (2009) GaussView 5.0, Semichem Inc. Shawnee mission KS

  31. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  32. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  33. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer University of Western Australia

  34. Spackman MA, McKinnon JJ (2002) Cryst Eng Comm 4:378–392

    Article  CAS  Google Scholar 

  35. Desiraju GR (2007) CrystEngComm 9:91–92

    Article  CAS  Google Scholar 

  36. Bernstein J, Dunitz JD, Gavezzotti A (2008) Cryst Growth Des 8:2011–2018

    Article  CAS  Google Scholar 

  37. Steed KM, Steed JW (2015) Chem Rev 115:2895–2933

    Article  CAS  Google Scholar 

  38. Brock CP (2016) Acta Cryst B72:807–821

    Google Scholar 

Download references

Acknowledgements

The X-ray structure was determined in the Advanced Crystal Engineering Laboratory (aceLAB) at the Chemistry Department of the University of Warsaw. Theoretical calculations were carried out with the support of the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM) University of Warsaw under grant no G33-17 and G26-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga Ostrowska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic Supplementary material

The deposition numbers CCDC-1542353 CCDC-1854981 and CCDC-1854982 for different polymorphs of 1 contain the supplementary crystallographic data for this paper. These data can be obtained free of chargé via www.ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax 44 1223 336,033

ESM 1

(DOCX 40 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrowska, K., Maciejewska, D., Cichowicz, G. et al. Solid-state structure by X-ray and 13C CP/MAS NMR of new 6-acetyl-8-bromo-5-O-alkylamino-4,7-dimethylcoumarins. Struct Chem 29, 1903–1915 (2018). https://doi.org/10.1007/s11224-018-1167-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1167-4

Keywords

Navigation