Skip to main content
Log in

Conformational analysis of ticagrelor: effect of noncovalent interaction on conformational population

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In order to track the source of duplicated peaks in the 1H-NMR spectrum of Ticagrelor, variable-temperature NMR (VT-NMR) experiment was carried out with temperature increasing from 300 to 343 K. The result showed that the phenomenon was brought forth by coexistence of conformational isomers. Subsequently, conformational search was carried out by molecular mechanics (MM) stimulations associating with quantum mechanics (QM) calculations. The results revealed that the isomers resulting in duplicated proton peaks were introduced by the rotation of 2,4-diflurophenyl group on C3’position of cyclopropyl. Finally, noncovalent interaction (NCI) topological analysis of the conformers exhibited that CH-π interactions and H-bonds play important roles in controlling the population of conformers of ticagrelor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Giezen J, Nilsson L, Berntsson P, WISSING BM, Giordanetto F, Tomlinson W, Greasley P (2009) Ticagrelor binds to human P2y12 independently from Adp but antagonizes Adp-induced receptor signaling and platelet aggregation. J Thromb Haemost 7:1556–1565

    Article  Google Scholar 

  2. James S, Angiolillo DJ, Cornel JH, Erlinge D, Husted S, Kontny F, Maya J, Nicolau JC, Spinar J, Storey RF (2010) Ticagrelor vs. clopidogrel in patients with acute coronary syndromes and diabetes: a substudy from the platelet inhibition and patient outcomes (Plato) trial. Eur Heart J 31:3006–3016

    Article  CAS  Google Scholar 

  3. Wallentin L, Becker RC, Budaj A, Cannon CP, Emanuelsson H, Held C, Horrow J, Husted S, James S, Katus H (2009) Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 361:1045–1057

    Article  CAS  Google Scholar 

  4. Husted S, Van Giezen J (2009) Ticagrelor: the first reversibly binding oral P2y12 receptor antagonist. Cardiovasc Ther 27:259–274

    Article  CAS  Google Scholar 

  5. Husted S, Emanuelsson H, Heptinstall S, Sandset PM, Wickens M, Peters G (2006) Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2y12 antagonist Azd6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin. Eur Heart J 27:1038–1047

    Article  CAS  Google Scholar 

  6. Schneider DJ (2011) Mechanisms potentially contributing to the reduction in mortality associated with ticagrelor therapy. J Am Coll Cardiol 57:685–687

  7. Serebruany VL (2011) Adenosine release: a potential explanation for the benefits of ticagrelor in the platelet inhibition and clinical outcomes trial? Am Heart J 161:1–4

    Article  CAS  Google Scholar 

  8. Teng R, Butler K (2010) Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2y12 receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 66:487–496

    Article  CAS  Google Scholar 

  9. Cayla G, Montalescot G, Collet J-P (2010) Ticagrelor to prevent restenosis. Am Heart Assoc 2:2320–2322

    Article  CAS  Google Scholar 

  10. Held C, Åsenblad N, Bassand JP, Becker RC, Cannon CP, Claeys MJ, Harrington RA, Horrow J, Husted S, James SK (2011) Ticagrelor versus clopidogrel in patients with acute coronary syndromes undergoing coronary artery bypass surgery: results from the Plato (platelet inhibition and patient outcomes) trial. J Am Coll Cardiol 57:672–684

    Article  CAS  Google Scholar 

  11. Cimino P, Bifulco G, Evidente A, Abouzeid M, Riccio R, Gomez-Paloma L (2002) Extension of the J-based configuration analysis to multiple conformer equilibria: an application to sapinofuranone a. Org Lett 4:2779–2782

    Article  CAS  Google Scholar 

  12. Harada R, Shigeta Y (2017) Efficient conformational search based on structural dissimilarity sampling: applications for reproducing structural transitions of proteins. J Chem Theory Comput 13:1411–1423

    Article  CAS  Google Scholar 

  13. Aliev AE, Courtier-Murias D (2007) Conformational analysis of L-prolines in water. J Phys Chem B 111:14034–14042

    Article  CAS  Google Scholar 

  14. Houseknecht JB, McCarren PR, Lowary TL, Hadad CM (2001) Conformational studies of methyl 3-O-methyl-Α-D-arabinofuranoside: an approach for studying the conformation of furanose rings. J Am Chem Soc 123:8811–8824

    Article  CAS  Google Scholar 

  15. McCarren PR, Gordon MT, Lowary TL, Hadad CM (2001) Computational studies of the arabinofuranose ring: conformational preferences of fully relaxed methyl Α-D-arabinofuranoside. J Phys Chem A 105:5911–5922

    Article  CAS  Google Scholar 

  16. Ams MR, Fields M, Grabnic T, Janesko BG, Zeller M, Sheridan R, Shay A (2015) Unraveling the role of alkyl F on Ch−Π interactions and uncovering the tipping point for fluorophobicity. J Org Chem 80:7764–7769

    Article  CAS  Google Scholar 

  17. Suzuki N, Matsuda T, Nagai T, Yamazaki K, Fujiki M (2016) Investigation of the intra-Ch/Π interaction in dibromo-9, 9′-dialkylfluorenes. Cryst Growth Des 16:6593–6599

    Article  CAS  Google Scholar 

  18. Gung BW, Emenike BU, Lewis M, Kirschbaum K (2010) Quantification of Ch··· Π interactions: implications on how substituent effects influence aromatic interactions. Chem Eur J 16:12357–12362

    Article  CAS  Google Scholar 

  19. Aliev AE, Moïse J, Motherwell WB, Nič M, Courtier-Murias D, Tocher DA (2009) Probing weak non-covalent interactions in solution and solid states with designed molecules. Phys Chem Chem Phys 11:97–100

    Article  CAS  Google Scholar 

  20. Taniguchi T, Nakano K, Baba R, Monde K (2017) Analysis of configuration and conformation of furanose ring in carbohydrate and nucleoside by vibrational circular dichroism. Org Lett 19:404–407

    Article  CAS  Google Scholar 

  21. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  22. Zhang H, Liu J, Zhang L, Kong L, Yao H, Sun H (2012) Synthesis and biological evaluation of ticagrelor derivatives as novel antiplatelet agents. Bioorg Med Chem Lett 22:3598–3602

    Article  CAS  Google Scholar 

  23. Włodarczyk J, Wolan A, Rakowiecki M, Bosiak MJ, Budny M (2015) Synthesis of an all-cis intermediate of ticagrelor. Tetrahedron Lett 56:6093–6096

    Article  Google Scholar 

  24. Kumar N, Devineni SR, Gajjala PR, Gupta DK, Bhat S, Kumar R (2016) Four process-related potential new impurities in ticagrelor: identification, isolation, characterization using HPLC, LC/ESI–MSn, NMR and their synthesis. J Pharm Biomed Anal 120:248–260

    Article  CAS  Google Scholar 

  25. Case DA, Cerutti DS, Cheatham III TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, et al., (2017) AMBER 2017. University of California, San Francisco. http://ambermd.org/

  26. Maia JDC, Urquiza Carvalho GA, Mangueira Jr CP, Santana SR, Cabral LAF, Rocha GB (2012) Gpu linear algebra libraries and Gpgpu programming for accelerating Mopac semiempirical quantum chemistry calculations. J Chem Theory Comput 8:3072–3081

    Article  CAS  Google Scholar 

  27. Stewart JJP, MOPAC (2016) Stewart computational chemistry, Colorado Springs, CO, USA, http://openmopac.net/MOPAC2016.html

  28. Lu T, Molclus Program (2016) Beijing Kein Research Center for Natural Science, China, http://www.keinsci.com/research/molclus.html

  29. Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32:1456–1465

    Article  CAS  Google Scholar 

  30. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (Dft-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  31. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  32. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms li to Kr. J Chem Phys 100:5829–5835

    Article  Google Scholar 

  33. Umezawa Y, Tsuboyama S, Honda K, Uzawa J, Nishio M (1998) Ch/Π interaction in the crystal structure of organic compounds. A database study. Bull Chem Soc Jpn 71:1207–1213

    Article  CAS  Google Scholar 

  34. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  35. Frisch M, Trucks G, Schlegel HB, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G (2009) Gaussian 09, Revision D. 01. Gaussian, Inc., Wallingford CT

    Google Scholar 

  36. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  37. Humphrey W, Dalke A, Schulten K (1996) Vmd: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Beijing Municipal Natural Science Foundation (CN) (No. KZ201510005004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1554 kb)

ESM 2

(WMV 4645 kb)

ESM 3

(WMV 2848 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Q., Tan, H., Wang, Y. et al. Conformational analysis of ticagrelor: effect of noncovalent interaction on conformational population. Struct Chem 29, 1663–1670 (2018). https://doi.org/10.1007/s11224-018-1143-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1143-z

Keywords

Navigation