Skip to main content
Log in

The cyclization mechanism of cis DAA-DAA dipeptide: an ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The gas-phase cyclization mechanism of cis DAA-DAA dipeptide (where DAA stands for the earlier described double amino acid molecule of (NH2)2C(COOH)2 formula while DAA-DAA indicates the system formed by two DAAs linked via the peptide bond) is investigated in the absence of any catalysts. Two different paths, concerted and stepwise, each leading to the same cyclo(DAA-DAA) dipeptide product are examined on the basis of theoretical calculations carried out at the CCSD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ level. The final product of the cyclization was found to adopt boat conformation of the six-membered 2,5-diketopiperazine ring and its formation was predicted to be thermodynamically favored by ca. 3.7 kcal/mol. The activation barrier estimated for the concerted mechanism (39 kcal/mol) was found to be higher than each of two barriers (30–33 kcal/mol) on the stepwise route which indicates that the cyclization process leading to the cyclo(DAA-DAA) dipeptide formation is more plausible when operating along the stepwise pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Craik DJ, Fairlie DP, Liras S, Price D (2013). Chem Biol Drug Des 81:136–147

    Article  CAS  PubMed  Google Scholar 

  2. Driggers EM, Hale SP, Lee J, Terrett NK (2008). Nat Rev Drug Discov 7:608–624

    Article  CAS  PubMed  Google Scholar 

  3. Prasad C (1995). Peptides 16:151–164

    Article  CAS  PubMed  Google Scholar 

  4. McCleland K, Milne PJ, Lucieto FR, Frost C, Brauns SC, Venter MVD, Plessis JD, Dyason K (2004). J Pharm Pharmacol 56:1143–1153

    Article  CAS  PubMed  Google Scholar 

  5. Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW (2003). Exp Biol Med 228:1338–1345

    Article  CAS  Google Scholar 

  6. Kanoh K, Kohno S, Katada J, Takahashi J, Uno I (1999). J Antibiot 52:134–141

    Article  CAS  PubMed  Google Scholar 

  7. Nicholson B, Lloyd GK, Miller BR, Palladino MA, Kiso Y, Hayashi Y, Neuteboom STC (2006). Anti-Cancer Drugs 17:25–31

    Article  CAS  PubMed  Google Scholar 

  8. van der Merwe E, Huang D, Peterson D, Kilian G, Milne PJ, Venter MVD, Frost C (2008). Peptides 29:1305–1311

    Article  CAS  PubMed  Google Scholar 

  9. Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, van Aalten DMF (2004). J Med Chem 47:5713–5720

    Article  CAS  PubMed  Google Scholar 

  10. Abraham WR (2005). Drug Des Rev 2:13–33

    CAS  Google Scholar 

  11. Gaunitz F, Hipkiss AR (2012). Amino Acids 43:135–142

    Article  CAS  PubMed  Google Scholar 

  12. Sinha S, Srivastava R, Clercq ED, Singh RK (2004). Nucleosides Nucleotides Nucleic Acids 23:1815–1824

    Article  CAS  PubMed  Google Scholar 

  13. Kwak MK, Liu R, Kwon JO, Kim MK, Kim AH, Kang SO (2013). J Microbiol 51:836–843

    Article  CAS  PubMed  Google Scholar 

  14. Unal CB, Owen MD, Millington WR (1997). Brain Res 747:52–59

    Article  CAS  PubMed  Google Scholar 

  15. Degeilh R, Marsh RE (1959). Acta Cryst 12:1007–1004

    Article  CAS  Google Scholar 

  16. Fava GG, Belicchi M (1981). Acta Cryst B37:625–629

    Article  CAS  Google Scholar 

  17. Palmer RA, Potter BS, Mendham AP, Dines TJ, Chowdhry BZ (2010). J Chem Crystallogr 40:608–615

    Article  CAS  Google Scholar 

  18. Budesinsky M, Cisarova I, Podlaha J, Borremans F, Martins JC, Waroquierd M, Pauwelsd E (2010). Acta Cryst B66:662–677

    Article  CAS  Google Scholar 

  19. Davies DB, Khaled Md A (1976). J Chem Soc Perkins Trans 11:1238–1244

    Article  Google Scholar 

  20. Kopple KD, Narutis V (1981). Int J Pept Prot Res 18:33–40

    Article  CAS  Google Scholar 

  21. Hirst JD, Persson BJ (1998). J Phys Chem A 102:7519–7524

    Article  CAS  Google Scholar 

  22. Zhu YY, Tang MS, Shi XY, Zhao YF (2007). Int J Quantum Chem 107:745–753

    Article  CAS  Google Scholar 

  23. Abiram A, Kolandaivel P (2010). J Mol Model 16:193–202

    Article  CAS  PubMed  Google Scholar 

  24. Wickrama Arachchilage AP, Wang F, Feyer V, Plekan O, Prince KC (2010). J Chem Phys 133:174319

    Article  CAS  Google Scholar 

  25. Wickrama Arachchilage AP, Wang F, Feyer V, Plekan O (2012). Prince KC J Chem Phys 136:124301

    Article  CAS  PubMed  Google Scholar 

  26. Xia P, Wang C, Qi C (2013) Chinese. J Chem 31:813–818

    CAS  Google Scholar 

  27. Li Y, Li F, Zhu Y, Li X, Zhou Z, Liu C, Zhang W, Tang M (2016). Struct Chem 27:1165–1173

    Article  CAS  Google Scholar 

  28. Freza S, Marchaj M, Skurski P (2014). Chem Phys Lett 599:34–37

    Article  CAS  Google Scholar 

  29. Freza S (2016). Theor Chem Accounts 135:146

    Article  CAS  Google Scholar 

  30. Freza S (2017). Theor Chem Accounts 136:7

    Article  CAS  Google Scholar 

  31. Czapla M, Freza S (2017). Int J Quantum Chem 117:e25435

    Article  CAS  Google Scholar 

  32. Head-Gordon M, Pople JA, Frisch MJ (1988). Chem Phys Lett 153:503–506

    Article  CAS  Google Scholar 

  33. Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:275–280

    Article  CAS  Google Scholar 

  34. Kendall RA, Dunning Jr TH, Harrison RJ (1992). J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  35. Fukui K (1981). Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  36. Purvis III GD, Bartlett RJ (1982). J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  37. Pople JA, Head-Gordon M, Raghavachari K (1987). J Chem Phys 87:5968–5975

    Article  CAS  Google Scholar 

  38. Lowry TH, Richardson KS (1981) Mechanism and theory in organic chemistry. 2nd edn. Harper & Row, New York p 194

    Google Scholar 

  39. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D (2009) J Gaussian, Inc., Wallingford CT

  40. Wright LR, Borkman RF (1982). J Phys Chem 86:3956–3962

    Article  CAS  Google Scholar 

  41. van Dornshuld E, Vergenz RA, Tschumper GS (2014). J Phys Chem B 118:8583–8590

    Article  CAS  PubMed  Google Scholar 

  42. Ramachandran GN, Sasisekharan V (1968). Adv Prot Chem 23:283–437

    Article  CAS  Google Scholar 

  43. Bettens FL, Bettens RPA, Brown RD, Godfrey PD (2000). J Am Chem Soc 122:5856–5860

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Polish Ministry of Science and Higher Education Grants No. 538-8375-B370-16/17 and DS-530-8375-D499-17. The calculations have been carried out using resources provided by Wroclaw Centre for Networking and Supercomputing (http://wcss.pl) grants No. 436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Freza.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical statement

All ethical guidelines have been adhered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freza, S. The cyclization mechanism of cis DAA-DAA dipeptide: an ab initio study. Struct Chem 29, 1025–1029 (2018). https://doi.org/10.1007/s11224-018-1085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1085-5

Keywords

Navigation