Skip to main content

Advertisement

Log in

Ti functionalized carbon and boron nitride chains: a promising material for hydrogen storage

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometries, electronic structures, thermochemical properties, polarizabilities, and hyperpolarizabilities of high capacity hydrogen storage media consisting of alkali metal such as Li or transition metal as Ti, that is, functionalized at the end of C and BN chains have been investigated theoretically using density functional theory (DFT). Fundamental aspects such as interaction energy, natural bond orbital (NBO), charge transfer, energy gap, and the projected density of states (PDOS) are elucidated to analyze the adsorption properties of H2 molecules. Our results revealed that H2 is introduced sequentially on the Ti-C7, Ti(B)-B4N3, and Ti(N)-B3N4 complexes and the H2 uptake capacity are found to be 10.89, 10.80, and 10.58 wt%, respectively. Moreover, two Ti atoms can be adsorbed concomitantly to the ends of C7, B4N3, and B3N4 chains where Ti sites can accommodate 16 H2 molecules, with 8 per Ti center, leading to a storage capacity of up to 26.40, 26.28, and 25.94 wt%, respectively. In addition, two binding mechanisms contribute to the adsorption of hydrogen molecules: polarization of the H2 under the electric field produced by the Ti–chain dipole and hybridization of the 3d orbitals of Ti with σ orbitals of H2. These lead to the hydrogen binding energies within the range of 0.22–0.56 eV/H2, open a prospect of a promising material system for hydrogen storage at ambient temperature. The large difference in charge transfer and interaction between the metal and chains is responsible for the large hyperpolarizability. Moreover, the C and BN chains can be stabilized effectively by C20 fullerene termination and store 8 H2 with an average binding energy of 0.22 eV/H2. The hydrogen desorption energies and temperatures indicate that the Ti-C7,Ti(B)-B4N3, Ti(N)-B3N4, Ti-C7-Ti, Ti(B)-B4N3-Ti(B), Ti(N)-B3N4-Ti(N), Ti-C7-C20, Ti(B)-B4N3-C20, and Ti(N)-B3N4-C20 complexes are easy to desorb H2 molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bogdanovic B, Felderhoff M, Kaskel S, Pommerin A, Schlichte K, Schuth F (2003). Adv Mater Weinheim, Ger 15:1012

    Article  CAS  Google Scholar 

  2. Schlapbach L, Züttel A (2001). Nature (London) 414:353

    Article  CAS  Google Scholar 

  3. Pupysheva OV, Farajian AA, Yakobson BI (2008). Nano Lett 8:767

    Article  CAS  Google Scholar 

  4. Tozzini V, Pellegrini V (2013). Phys Chem Chem Phys 15:80

    Article  CAS  Google Scholar 

  5. Sun Q, Wang Q, Jena P, Kawazoe Y (2005). J Am Chem Soc 127:14582

    Article  CAS  Google Scholar 

  6. Sun Q, Jena P, Wang Q, Marquez M (2006). J Am Chem Soc 128:9741

    Article  CAS  Google Scholar 

  7. Yildirim T, Ciraci S (2005). Phys Rev Lett 94:175501

    Article  CAS  Google Scholar 

  8. Zhao F, Kim YH, Dillon AC, Heben MJ, Zhang SB (2005). Phys Rev Lett 94:155504

    Article  Google Scholar 

  9. Liu CS, An H, Guo L, Zeng Z, Ju X (2011). J Chem Phys 134:024522

    Article  Google Scholar 

  10. Sun YY, Lee K, Wang L, Kim YH, Chen W, Chen ZF, Zhang SB (2010). Phys Rev B 82:073401

    Article  Google Scholar 

  11. Jin C, Lan H, Peng L, Suenage K, Iijima S (2009). Phys Rev Lett 102(20):205501

    Article  Google Scholar 

  12. Zhao XL, Ando Y, Liu Y, Jinno M, Suzuki T (2003). Phys Rev Lett 90(18):187401

    Article  Google Scholar 

  13. Matsutani R, Ozaki F, Yamamoto R, Sanada T, Okada Y, Kojima K (2009). Carbon 47(7):1659

    Article  CAS  Google Scholar 

  14. Zhang ZH, Guo C, Kwong G, Deng XQ (2013). Carbon 51:313

    Article  Google Scholar 

  15. Deng X, Zhang Z, Zhou J, Qiu M, Tang G (2010). J Chem Phys 132(12):124107

    Article  Google Scholar 

  16. Li ZY, Sheng W, Ning Z, Zhang Z, Yang Z, Guo H (2009). Phys Rev B 80(11):115429

    Article  Google Scholar 

  17. Lang ND, Avouris P (2000). Phys Rev Lett 84:358

    Article  CAS  Google Scholar 

  18. Chun-Sheng L, Hui A, Zeng Phys Z (2011). Chem Chem Phys 13:2323

    Article  Google Scholar 

  19. Durgun E, Senger RT, Sevincli H, Mehrez H, Ciraci S (2006). Phys Rev B: Condens Matter Mater Phys 74:235413

    Article  Google Scholar 

  20. Abdurahman A, Shukla A, Dolg M (2002). Phys Rev B 65:115106

    Article  Google Scholar 

  21. Cretu O, Komsa H, Lehtinen O, Algara-Siller G, Kaiser U, Suenaga K, Krasheninnikov V (2014). ACS Nano 8(12):11950

    Article  CAS  Google Scholar 

  22. Zeng D, Wang H, Wang B, Hou JG (2000). Appl Phys Lett 77:3595

    Article  CAS  Google Scholar 

  23. Gutierrez R, Fagas G, Cuniberti G, Grossmann F, Schmidt R, Richter K (2002). Phys Rev B 65:113410

    Article  Google Scholar 

  24. Prinzbach H, Weiler A, Landenberger P, Wahl F, Wörth J, Scott LT, Gelmont M, Olevano D, Issendorff BV (2000). Nature (London) 407:60

    Article  CAS  Google Scholar 

  25. Ravagnan L, Manini N, Cinquanta E, Onida G, Sangalli D, Motta C, Devetta M, Bordoni A, Piseri P, Milani P (2009). Phys Rev Lett 102:245502

    Article  Google Scholar 

  26. Ravagnan L, Bongiorno G, Bandiera D, Salis E, Piseri P, Milani P, Lenardi C, Coreno M, de Simone M, Prince KC (2006). Carbon 44:1518

    Article  CAS  Google Scholar 

  27. Meyer JC, Siller GA, Kaiser U (2009). New J Phys 11:083019

    Article  Google Scholar 

  28. Börrnert F, Börrnert C, Gorantla S, Liu X, Bachmatiuk A, Joswig JO, Wagner FR, Schäffel F, Warner JH, Schönfelder R, Rellinghaus B, Gemming T, Thomas J, Knupfer M, Büchner B, Rümmeli MH (2010). Phys Rev B 81:085439

    Article  Google Scholar 

  29. X. Fan, L. Liu, J. Lin, Z. Shen, J Kuo - ACS nano, 3 (2009) 3788

  30. Rusznyak A, Zolyomi V, Kurti J, Yang S, Kertesz M (2005). Phys Rev B 72:155420

    Article  Google Scholar 

  31. Ravagnan L, Siviero F, Lenardi C, Piseri P, Barborini E, Milani P, Casari CS, Li Bassi A, Bottani CE (2002). Phys Rev Lett 89:285506

    Article  CAS  Google Scholar 

  32. Becke AD (1988). Phys Rev 38:3098

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  34. Ricca A, Bauschlicher C (1994). J Phys Chem 98:12899

    Article  CAS  Google Scholar 

  35. Robinson J, Snow E, Reinecke T, Perkins F (2006). Nano Lett 6:1747

    Article  CAS  Google Scholar 

  36. Russo T, Martin R, Hay P (1995). J Chem Phys 102:8023

    Article  CAS  Google Scholar 

  37. Siegbahn P, Crabtree R (1997). J Am Chem Soc 119:3103

    Article  CAS  Google Scholar 

  38. Pacchioni G (2001) The chemical physics of solid surfaces. In: Woodruff DP (ed) Oxide surfaces1st edn. Elsevier, Amsterdam, pp 94–135

    Chapter  Google Scholar 

  39. Caballol R, Castell O, Illas F, Malrieu JP, Moreira IPR (1997). J Phys Chem A 101:7860

    Article  CAS  Google Scholar 

  40. Durgun E, Dag S, Bagci VMK, Gulseren O, Yildirim T, Ciraci S (2003). Phys Rev B 67:201401

    Article  Google Scholar 

  41. Dolg M, Wedig U, Stoll H, Preuss H (1987) Energy-adjusted ab initio pseudopotentials for the first row transition elements. J Chem Phys 86:866

    Article  CAS  Google Scholar 

  42. Dunten P, Kammlott U, Crowther R, Weber D, Palermo R, Birktoft J (1998). Biochemistry 37:7907

    Article  CAS  Google Scholar 

  43. Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990). Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  44. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian, Inc., Wallingford CT, 2010

  45. O’Boyle NM, Tenderholt AL, Langner KM (2008). J Comput Chem 29:839

    Article  Google Scholar 

  46. Lee H, Choi WI, Ihm J (2006). Phys Rev Lett 97:056104

    Article  Google Scholar 

  47. Durgun E, Ciraci S, Zhou W, Yildirim T (2006). Phys Rev Lett 97:226102

    Article  CAS  Google Scholar 

  48. Artyukhov VI, Liu M, Yakobson BI (2014). Nano Lett 14:4224

    Article  CAS  Google Scholar 

  49. O. Cretu, A. R.Botello, I. Janowska, C.Pham-Huu, J.-C.Charlier, F Banhart Nano Lett, 13 (2013) 3487

  50. Lueking AD, Yang RT (2004). Appl Catal A 265(2):259

    Article  CAS  Google Scholar 

  51. Singh AK, Ribas MA, Yakobson BI (2009). ACS Nano 3(7):1657

    Article  CAS  Google Scholar 

  52. Hydrogen Storage, Department of Energy <http://energy.gov/eere/fuelcells/hydrogen-storage>

  53. Ataca C, Akturk E, Ciraci S (2009). Phys Rev B79(4):041406

    Article  Google Scholar 

  54. Li-Juan M, Feng JJ, Hai-Shun W (2015). Chem Phys 457:57

    Article  Google Scholar 

  55. Bora PL, Singh AK (2013). J Chem Phys 139(16):164319

    Article  Google Scholar 

  56. Karamanis P, Marchal R, Carbonniére P, Pouchan C (2011). J Chem Phys 135:044511

    Article  Google Scholar 

  57. Koukaras EN, Zdetsis AD, Karamanis P, Pouchan C, Avramopoulos A, Papadopoulos MG (2012). J Comput Chem 33:1068

    Article  CAS  Google Scholar 

  58. Yang J, Sudik A, Wolverton C, Siegelwa JS (2010). Chem Soc Rev 39:656

    Article  CAS  Google Scholar 

  59. Durgun E, Çıracı S, Yildirim T (2008). Phys Rev B 77:085405

    Article  Google Scholar 

  60. Lai QW, Paskevicius M, Sheppard DA, Buckley CE, Thornton AW, Hill MR, Gu QF, Mao JF, Huang ZG, Liu HK, Guo ZP, Banerjee A, Chakraborty S, Ahuja R, Aguey-Zinsou KF (2015). Chem Sus Chem 8:2789

    Article  CAS  Google Scholar 

  61. Bardhan R, Ruminski AM, Brand A, Urban JJ (2011). Energy Environ Sci 4:4882

    Article  CAS  Google Scholar 

  62. Jia Y, Sun C, Shen S, Zou J, Mao SS, Yao X (2015). Renew Sust Energ Rev 44:289

    Article  CAS  Google Scholar 

  63. Crivello JC, Dam B, Denys RV, Dornheim M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Milanese C, Milcius D, Walker GS, Webb CJ, Zlotea C, Yartys VA (2016). Appl Phys A Mater Sci Process 122:97

    Article  Google Scholar 

  64. Wu X, Zhang R, Yang J (2016). Phys Chem Chem Phys 18:19412

    Article  CAS  Google Scholar 

  65. Handbook of chemistry and physics, 75th ed., edited by D. R. Lide CRC, New York, 1994

  66. Chakraborty B, Modak P, Banerjee S (2012). J Phys Chem C 116:22502

    Article  CAS  Google Scholar 

  67. Bhattacharya A, Bhattacharya S, Majumder C, Das GP (2010). J Phys Chem C 114:10297

    Article  CAS  Google Scholar 

  68. Samolia M, Kumar TJD (2014) Hydrogen sorption efficiency of titanium-functionalized Mg-BN framework. J Phys Chem C 118:10859

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Deanship of Scientific Research, Qassium University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel Aal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalabi, A.S., Abdel Aal, S. & Soliman, K.A. Ti functionalized carbon and boron nitride chains: a promising material for hydrogen storage. Struct Chem 29, 563–576 (2018). https://doi.org/10.1007/s11224-017-1053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1053-5

Keywords

Navigation