Skip to main content
Log in

A computational investigation of monosubstituted boroxines(RH2B3O3): structure and formation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Boroxines have emerged as an important class of compounds with diverse applications in many fields. However, there are limited experimental and/or computational structural and thermal data available for these compounds or for their corresponding boronic acids. In this investigation, we report structural parameters for a variety of aliphatic monosubstituted boroxines (RH2B3O3) and their enthalpies of formation via the dehydration reactions from the boronic acids (R–B(OH)2), i.e., R–B(OH)2 + 2H–B(OH)2 → RH2B3O3 + 3H2O. Equilibrium geometries of all the boronic acids and monosubstituted boroxines involved in this article were obtained using second-order Møller–Plesset perturbation theory with the Dunning–Woon aug-cc-pVDZ and aug-cc-pVTZ basis sets; heats of formation were calculated at the G3 level of theory. The specific substituents, R, include all the second- and third-period hydrides, as well as a selection of electron-donating/electron-withdrawing groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hall DG (2005) Boronic acids: preparation and applications in organic synthesis and medicine, 1st edn. Weinheim, Wiley-VCH Verlag

    Book  Google Scholar 

  2. Korich AL, Iovine PM (2010) Dalton Trans 39:1423–1431

    Article  CAS  Google Scholar 

  3. Dembitsky VM, Quntar AA, Srebnik M (2004) Mini Rev Med Chem 4:1001–1018

    Article  CAS  Google Scholar 

  4. Baker SJ, Tomsho JW, Benkovic SJ (2011) Chem Rev Soc. doi:10.1039/c0cs00131g

    Google Scholar 

  5. Bhat KL, Markham GD, Larkin JD, Bock CW (2011) J Phys Chem A 115:7785–7793

    Article  CAS  Google Scholar 

  6. Yao L, Zeng X, Ge M, Wang D (2007) J Mol Struct 841:104–109

    Article  CAS  Google Scholar 

  7. Porter RF, Gupta SK (1964) J Phys Chem 68:2732–2733

    Article  CAS  Google Scholar 

  8. Chase MW (1998) NIST—JANAF thermochemical tables (Journal of Physical and Chemical Reference Data Monograph No. 9). American Institute of Physics

  9. Ruscic B, Pinson RE, Morton ML, von Laszevski G, Bittner SJ, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) J Phys Chem A 108:9979–9997

    Article  CAS  Google Scholar 

  10. Ruscic B, Pinson RE, von Laszevski G, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) J Phys Conf Ser 16:561–570

    Article  CAS  Google Scholar 

  11. Gurvich LV, Veyts IV, Alcock CB (1994) Thermodynamic properties of individual substances, vol 3 (Parts 1 and 2) elements B, Al, Ga, In, Tl, Be, Mg, Ca, Sr, and Ba and their compounds. CRC Press Inc, Boca Raton

    Google Scholar 

  12. Tokunaga Y, Ueno H, Shimomura Y, Seo T (2002) Heterocycles 57:787–790

    Article  CAS  Google Scholar 

  13. Bock CW, Larkin JD (2012) Comput Theor Chem 986:35–42

    Article  CAS  Google Scholar 

  14. Ghiasi R (2008) J Mol Struct (THEOCHEM) 853:77–81

    Article  CAS  Google Scholar 

  15. Guest MF, Pedley JB, Horn M (1969) J Chem Thermodyn 1:345–352

    Article  CAS  Google Scholar 

  16. Porter RF, Gupta SK (1964) J Phys Chem 68:280–289

    Article  CAS  Google Scholar 

  17. Tokunaga Y, Ueno H, Shimomura Y (2007) Heterocycles 74:219–223

    Article  CAS  Google Scholar 

  18. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  19. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  20. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    Article  CAS  Google Scholar 

  21. Kendall RA, Dunning TH Jr (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  22. Peterson KA, Woon DE, Dunning TH Jr (1994) J Chem Phys 100:7410–7415

    Article  CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2003) G03, R B.02 ed, Gaussian Inc., Wallingford, CT

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) G09 Gaussian Inc., Wallingford, CT

  25. Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764–7776

    Article  CAS  Google Scholar 

  26. Curtiss LA, Raghavachari K (2002) Theor Chem Acc 108:61–70

    Article  CAS  Google Scholar 

  27. Carpenter JE, Weinhold F (1988) J Mol Struct (THEOCHEM) 169:41–62

    Article  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    Article  CAS  Google Scholar 

  30. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  31. Snyder HR, Kuck JA, Johnson JR (1938) J Am Chem Soc 60:105–111

    Article  CAS  Google Scholar 

  32. Wagner M, van Eikema Homes NJR, Ndth H, Schleyer PVR (1995) Inorg Chem 34:607–614

    Article  CAS  Google Scholar 

  33. Larkin JD, Bhat KL, Markham GD, Brooks BR, Schaefer HF, Bock CW III (2006) J Phys Chem A 110:10633–10642

    Article  CAS  Google Scholar 

  34. Larkin JD, Bhat KL, Markham GD, Brooks BR, Lai JH, Bock CW (2007) J Phys Chem A 111:6489–6500

    Article  CAS  Google Scholar 

  35. Boggs JE, Cordell FR (1981) J Mol Struct (THEOCHEM) 76:329–347

    Article  Google Scholar 

  36. So SP (1982) J Mol Struct (THEOCHEM) 89:255–258

    Article  Google Scholar 

  37. Duan X, Linder DP, Page M, Soto MR (1999) J Mol Struct (THEOCHEM) 465:231–242

    Article  Google Scholar 

  38. Stefani D, Pashalidis I, Nicolaides AV (2008) J Mol Struct (THEOCHEM) 853:33–38

    Article  CAS  Google Scholar 

  39. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  40. Curtiss LA, Redfern PC, Raghavachari K (2005) J Chem Phys 123:124107

    Article  Google Scholar 

  41. Grant DJ, Dixon DA (2009) J Phys Chem A 113:777–787

    Article  CAS  Google Scholar 

  42. Porter RF, Bidinosti DR, Watterson VF (1962) J Chem Phys 36:2104–2108

    Article  CAS  Google Scholar 

  43. Chang CH, Porter RF, Bauer SH (1969) Inorg Chem 8:1689–1693

    Article  CAS  Google Scholar 

  44. Beckmann J, Dakternieks D, Duthie A, Lim AEK, Tiekink ERT (2001) J Organomet Chem 633:149–156

    Article  CAS  Google Scholar 

  45. Domenicano A, Vaciago A, Coulson C (1975) Acta Cryst Sect B 31:1630–1641

    Article  Google Scholar 

  46. Tasi G, Iszák R, Matisz G, Császár AG, Kállay M, Ruscic B, Stanton JF (2006) ChemPhysChem 7:1664–1667

    Article  CAS  Google Scholar 

  47. Hansch C, Leo A (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley-Interscience, New York

    Google Scholar 

  48. Schlegel HB, Harris SJ (1994) J Phys Chem 98:11178–11180

    Article  CAS  Google Scholar 

  49. Karton A, Martin JML (2007) J Phys Chem A 111:5936–5944

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation through XSEDE resources provided by the XSEDE Science Gateways program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niny Z. Rao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, N.Z., Larkin, J.D. & Bock, C.W. A computational investigation of monosubstituted boroxines(RH2B3O3): structure and formation. Struct Chem 26, 1151–1162 (2015). https://doi.org/10.1007/s11224-015-0577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-015-0577-9

Keywords

Navigation