Skip to main content
Log in

Theoretical study of geometry and nucleophilicity of the exocyclic methylene in five-membered ring cyclic ketene acetals, neutral and protonated, containing pnictogen and chalcogen heteroatoms

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A series of neutral and protonated five-membered ring cyclic ketene acetals have been examined computationally for any trends in nucleophilicity in the exocyclic methylene and for their ground state geometries. A total of 58 different species were examined, 29 neutral molecules and the corresponding 29 protonated species. The heteroatoms that were used in the heterocyclic ring were a combination of nitrogen, phosphorus, and arsenic from the pnictogen family and oxygen, sulfur, and selenium from the chalcogen family. All geometries were initially optimized at using density functional theory and all stationary points were confirmed to be either minima or transition states through vibrational analysis. All the geometries were consequentially optimized using Møller–Plesset second order perturbation theory with a polarized triple zeta basis set. The main focus of the study was the nucleophilicity of the exocyclic methylene carbon atom and its dependence on heteroatom substitution. As probes for nucleophilicity, the proton affinities of the neutral species, the bond lengths of the exocyclic double bond, and atomic charges were used. The study also resulted in some interesting molecular geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ye G, Chen C, Chatterjee S, Collier WE, Zhou A, Song Y, Beard DJ, Pittman C U Jr (2010) Synthesis 1:141–152

    Article  Google Scholar 

  2. Song Y, Henry WP, Silva HI, Ye G, Pittman C U Jr (2011) Tetrahedron Lett 52:853–858

    Article  CAS  Google Scholar 

  3. Ye G, Zhou A, Henry WP, Song Y, Chatterjee S, Beard DJ, Pittman CU Jr (2008) J Org Chem 73:5170–5172

    Article  CAS  Google Scholar 

  4. Chatterjee S, Ye G, Song Y, Barker BL, Pittman CU Jr (2010) Synthesis 19:3384–3394

    Google Scholar 

  5. Ye G, Chatterjee S, Li M, Zhou A, Song Y, Barker BL, Chen C-L, Beard DJ, Henry WP, Pittman CU Jr (2010) Tetrahedron 66:2219–2927

    Article  Google Scholar 

  6. Ye G, Henry WP, Chen C-L, Zhou A, Pittman CU Jr (2009) Tetrahedron Lett 50:2135–2139

    Article  CAS  Google Scholar 

  7. Chatterjee S, Zhou A, Barker BL, Chen C-L, Song Y, Pittman CU Jr (2010) Synthesis 7:1209–1216

    Google Scholar 

  8. Zhou A, Pittman CU Jr (2006) Comb Chem 8(2):262–267

    Article  CAS  Google Scholar 

  9. Zhou A, Pittman CU Jr (2006) Synthesis 1:37–48

    Article  Google Scholar 

  10. Chatterjee S, Ye G, Pittman CU Jr (2010) Tetrahedron Lett 51:1139–1144

    Article  CAS  Google Scholar 

  11. Cao L, Wu Z, Pittman CU Jr (1999) J Polym Sci A 37:2841–2852

    Article  CAS  Google Scholar 

  12. Cao L, Pittman CU Jr (1999) J Polym Sci A 37:2823–2840

    Article  CAS  Google Scholar 

  13. Wu Z, Cao L, Pittman CU Jr (1998) Recent Res Dev Polym Sci 2:467–484

    CAS  Google Scholar 

  14. Wu Z, Cao L, Pittman CU Jr. (1998) J Polym Sci 36:861–871 and 973–881

  15. Zhu PC, Pittman CU Jr (1996) J Polym Sci A 34:169–174

    Article  CAS  Google Scholar 

  16. Pittman CU Jr, Wu Z, Zhu PC (1997) J Polym Sci A 35:485–491

    Article  Google Scholar 

  17. Zhu PC, Pittman CU Jr (1996) J Polym Sci A 34:73–80

    Article  CAS  Google Scholar 

  18. Liu Y, Pittman CU Jr (1997) J Polym Sci A 35:3655–3771

    Article  CAS  Google Scholar 

  19. Liu Y, Keller C, Pittman CU Jr (1997) J Polym Sci A 35:3707–3716

    Article  CAS  Google Scholar 

  20. Zhou A, Cao L, Li H, Lu Z, Cho HS, Henry WP, Pittman CU Jr (2006) Tetrahedron 62:4093–4106

    Article  CAS  Google Scholar 

  21. Zhu PC, Liu Y, Lin J, Pittman CU Jr (1996) J Polym Sci A 34:2195–2203

    Article  CAS  Google Scholar 

  22. Zhou A, Pittman CU Jr (2005) Tetrahedron Lett 46(22):3801–3805

    Article  CAS  Google Scholar 

  23. Meerwein H, Hinz G, Hoffman D, Konig E, Pfeil EJ (1939) Prakt Chem 154:83

    Article  CAS  Google Scholar 

  24. Meerwein H (1955) Angew Chem 67:374

    Article  CAS  Google Scholar 

  25. Meerwein H, Wunderlich K (1957) Angew Chem 69:481

    Article  CAS  Google Scholar 

  26. Meerwein H, Allendorfer H, Beekmann P, Kunert F, Morschel H, Pawellek H, Wunderlich K (1958) Angew Chem 70(211):630

    Google Scholar 

  27. Meerwein H, Hederich V, Wunderlich K (1958) Arch Pharm 291:541

    Article  CAS  Google Scholar 

  28. Meerwein H, Hederich V, Morschel J, Wunerlich K, Liebigs J (1960) Ann Chem 635:1

    Article  CAS  Google Scholar 

  29. Meerwein H, Bodenbrenner K, Borner P, Kunert F, Wunderlich K, Liebigs J (1968) Ann Chem 632:38

    Article  Google Scholar 

  30. Winstein S, Buckles REJ (1942) Am. Chem Soc 64(2780):2787

    Article  CAS  Google Scholar 

  31. Winstein S, Hess HV, Buckles RE (1942) J Am Chem Soc 64:2769

    Article  Google Scholar 

  32. Winstein S, Buckles RE (1943) J Am Chem Soc 65:613

    Article  CAS  Google Scholar 

  33. Winstein S, Seymour D (1946) J Am Chem Soc 68:119

    Article  CAS  Google Scholar 

  34. Winstein S, Grunwald E, Ingraham LL (1948) J Am Chem Soc 70:821

    Article  CAS  Google Scholar 

  35. Winstein S, Hanson C, Grunwald E (1948) J Am Chem Soc 70:812

    Article  CAS  Google Scholar 

  36. Winstein S, Grunwald E, Buckles RE, Hanson C (1948) J Am Chem Soc 70:816

    Article  CAS  Google Scholar 

  37. Lemieux RU, Brice C, Huber G (1955) Can J Chem 33:134

    Article  CAS  Google Scholar 

  38. Lemieux RU, Huber G (1955) Can J Chem 33:128

    Article  CAS  Google Scholar 

  39. Capon B (1967) Chem Commun 21:188

    Google Scholar 

  40. Hedgley EJ, Fletcher HG Jr (1963) J Am Chem Soc 85:1615

    Article  CAS  Google Scholar 

  41. Hedgley EJ, Fletcher HG Jr (1964) J Am Chem Soc 86(1576):1583

    Article  CAS  Google Scholar 

  42. Pederson C (1963) Acta Chem Scand 17:1269

    Article  Google Scholar 

  43. Pederson C (1968) Acta Chem Scand 22:1888

    Article  Google Scholar 

  44. Hanessian S (1966) Carbohydr Res 2:86

    Article  CAS  Google Scholar 

  45. Hanessian S, Plessas NR (1969) J Org Chem 34(1035):1045–1053

    Article  CAS  Google Scholar 

  46. Hart H, Tomalia DA (1967) Tetrahedron Lett 8:1347

    Article  Google Scholar 

  47. Tomalia DA, Hart H (1966) Tetrahedron Lett 7:3383–3389

    Article  Google Scholar 

  48. Pittman CU Jr, McManus SP, Larsen JW (1972) Chem Rev 72(4):357–438

    Article  CAS  Google Scholar 

  49. Beard DJ, Pace CR, Pittman CU Jr, Saebo S (2009) Struct Chem 20:961–967

    Article  CAS  Google Scholar 

  50. Beard DJ, Barakat SA, Lockhart NB, Pace CR, Pittman CU Jr, Hamil BW, Saebo S (2012) Struct Chem 23:351–357

    Article  CAS  Google Scholar 

  51. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  52. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  53. Frisch MJ, Pople JA (1984) J Chem Phys 80:3265

    Article  CAS  Google Scholar 

  54. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  55. Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6769

    Article  Google Scholar 

  56. Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  57. Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  58. Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comput Chem 30:317

    Article  CAS  Google Scholar 

  59. PQS version 3.3, Parallel Quantum Solutions, 2013 Green Acres Road, Fayetteville, AR 72703, USA

  60. Haddon RC (1986) Pure Appl Chem 58:137–142

    Article  CAS  Google Scholar 

  61. Haddon RC (1988) Acc Chem Res 21:243–249

    Article  CAS  Google Scholar 

  62. Ye G (2008) PhD Dissertation, Mississippi State University

  63. Mulliken RS (1955) J Chem Phys 23:1833–1840

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided by NSF EPSCoR #0903787. The authors are also indebted to Dr. Charles Pittman at Mississippi State University for inspiring this study and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svein Saebo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catoire, A.E., Beard, D.J. & Saebo, S. Theoretical study of geometry and nucleophilicity of the exocyclic methylene in five-membered ring cyclic ketene acetals, neutral and protonated, containing pnictogen and chalcogen heteroatoms. Struct Chem 25, 371–376 (2014). https://doi.org/10.1007/s11224-013-0338-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0338-6

Keywords

Navigation