Skip to main content
Log in

Controlled growth of flower-like, rod-like, and snowflake-like ZnO nanostructures using agarose as biotemplate and its photoluminescence property

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Different nanostructures such as flower-like, rod-like, and snowflake-like of ZnO have been synthesized by varying the amount of agarose using sonochemical method. It is found that morphology is governed by amount of agarose as well as ultrasonic treatment. Three amounts of agarose 0.01, 0.1, and 1.00 g are used to investigate its effect on ZnO. X-ray diffraction (XRD) confirmed the formation of single phase with hexagonal structure. Scanning electron microscopy (SEM) showed flower-like, rod-like, and snowflake-like morphology for 1.00, 0.1, and 0.01 g agarose, respectively. UV/Visible absorption study showed blue shift at band-edge absorption in comparison to bulk ZnO. Photoluminescence spectra showed band-edge emission at 399 nm for lowest amount of agarose which quenched on increasing the agarose amount. These findings show a better and more environment friendly procedure for production of ZnO of readily adjustable morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Djurisic AB, Leung YH (2006) Small 2:944

    Article  CAS  Google Scholar 

  2. Li JY, Tompa GS, Liang S, Gorla C, Lu C (1997) J Vac Sci Technol A 15:1663

    Article  Google Scholar 

  3. Mason TJ (ed) (1990) Sonochemistry: the uses of ultrasound in chemistry. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Zheng Y, Yu X, Xu X, Jin D, Yue L (2010) Ultrason Sonochem 17:7

    Article  Google Scholar 

  5. Mazloumi M, Zanganeh S, Kajbafvala A, Ghariniyat P, Taghavi S, Lak A, Mohajerani M, Sadrnezhaad SK (2009) Ultrason Sonochem 16:11

    Article  CAS  Google Scholar 

  6. Jia X, Fan H, Zhang F, Qin L (2010) Ultrason Sonochem 17:284

    Article  CAS  Google Scholar 

  7. Araki C (1966) Proc Int Seaweed Symp 5:3

    Google Scholar 

  8. Fatin-Rouge N, Milton A, Buffle J, Goulet RR, Tessier A (2003) J Phys Chem B 107:12126

    Article  CAS  Google Scholar 

  9. Liu JC, He F, Durham E, Zhao D, Roberts CB (2008) Langmuir 24:328

    Article  CAS  Google Scholar 

  10. Zhou JF, Zhou MF, Caruso RA (2006) Langmuir 22:3332

    Article  CAS  Google Scholar 

  11. Suslick KS (1988) Ultrasound: its chemical, physical and biological effects. VCH, Weinheim

    Google Scholar 

  12. Suslick KS (1990) Science 247:439

    Article  Google Scholar 

  13. Rees DA (1972) J Biochem 126:257

    CAS  Google Scholar 

  14. Arnott S, Fulmer A, Scott WE, Dea ICM, Moorhouse R, Rees DA (1974) J Mol Biol 90:269

    Article  CAS  Google Scholar 

  15. Griess GA, Moreno ET, Easom RA, Serwer P (1989) Biopolymers 28:1475

    Article  CAS  Google Scholar 

  16. Xiong JY, Narayanan J, Liu XY, Chong TK, Chen SB, Chung TS (2005) J Phys Chem B 109:5638

    Article  CAS  Google Scholar 

  17. Mishra P, Yadav RS, Pandey AC (2010) Ultrason Sonochem 17(3):560

    Article  CAS  Google Scholar 

  18. Yadav RS, Mishra P, Pandey AC (2008) Ultrason Sonochem 15(5):863

    Article  CAS  Google Scholar 

  19. Yadav RS, Pandey AC (2009) Struct Chem 20:1093

    Article  CAS  Google Scholar 

  20. Xing YJ, Xi ZH, Xue ZQ, Zhang XD, Song JH, Wang RM, Xu J, Song Y, Zhang SL, Yu DP (2003) Appl Phys Lett 83:1689

    Article  CAS  Google Scholar 

  21. Fan XM, Lian JS, Zhao L, Liu Y (2005) Appl Surf Sci 252:420

    Article  CAS  Google Scholar 

  22. Tatsumi T, Fujita M, Kawamoto N, Sasajima M, Horikoshi Y (2004) Jpn J Appl Phys 43:2602

    Article  CAS  Google Scholar 

  23. Wei X, Ban B, Xue C, Chen C, Liu M (2006) Jpn J Appl Phys 45:8586

    Article  CAS  Google Scholar 

  24. Garcia RB, Vidal RRL (2000) Polim Cienc Tecnol 10:155

    CAS  Google Scholar 

  25. Nakamoto K (1978) Infrared and Raman spectra of inorganic and co-ordination compounds. Chichester, Wiley

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to all the scientific members of Nanotechnology Application Centre, University of Allahabad, Allahabad, India. First author wishes to express her gratitude to Council of Scientific and Industrial Research (CSIR) New Delhi, India, for award of Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Priya Mishra or Raghvendra S. Yadav.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, P., Yadav, R.S. & Pandey, A.C. Controlled growth of flower-like, rod-like, and snowflake-like ZnO nanostructures using agarose as biotemplate and its photoluminescence property. Struct Chem 22, 1281–1286 (2011). https://doi.org/10.1007/s11224-011-9822-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-011-9822-z

Keywords

Navigation