Skip to main content
Log in

Adaptive sequential design for regression on multi-resolution bases

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This work investigates the problem of construction of designs for estimation and discrimination between competing linear models. In our framework, the unknown signal is observed with the addition of a noise and only a few evaluations of the noisy signal are available. The model selection is performed in a multi-resolution setting. In this setting, the locations of discrete sequential D and A designs are precisely constraint in a small number of explicit points. Hence, an efficient stochastic algorithm can be constructed that alternately improves the design and the model. Several numerical experiments illustrate the efficiency of our method for regression. One can also use this algorithm as a preliminary step to build response surfaces for sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amato, U., Antoniadis, A., Pensky, M.: Wavelet kernel penalized estimation for non-equispaced design regression. Stat. Comput. 16, 37–55 (2006)

    Article  MathSciNet  Google Scholar 

  • Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer Academic, Boston (2004)

    Book  MATH  Google Scholar 

  • Biswas, A., Chaudhuri, P.: An efficient design for model discrimination and parameter estimation in linear models. Biometrika 89(3), 709–718 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Blanchard, G., Geman, D.: Sequential testing designs for pattern recognition. Ann. Stat. 33, 1155–1202 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Box, G.E.P., Draper, N.R.: A basis for the selection of a response surface design. J. Am. Stat. Assoc. 54(287), 622–654 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Busby, D., Farmer, C., Iske, A.: Hierarchical nonlinear approximation for experimental design and statistical data fitting. SIAM J. Sci. Comput. 29(1), 49–69 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E., Tao, T.: The Dantzig selector: Statistical estimation when p is much smaller than n. Ann. Stat. 35(6), 2313–2351 (2007)

    Article  MATH  Google Scholar 

  • Castaño, D., Kunoth, A.: Adaptive fitting of scattered data by spline wavelets. In: Curve and Surface Fitting, Saint-Malo, 2002, pp. 65–78. Nashboro Press, Brentwood (2003)

    Google Scholar 

  • Dette, H., Studden, W.J.: The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Wiley Series in Probability and Statistics: Applied Probability and Statistics. Wiley, New York (1997)

    MATH  Google Scholar 

  • Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika (1994)

  • Efron, B., Johnstone, I., Hastie, T., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2), 407–499 (2003)

    MathSciNet  Google Scholar 

  • Fang, Z., Wiens, D.P.: Integer-valued, minimax robust designs for estimation and extrapolation in heteroscedastic, approximately linear models. J. Am. Stat. Assoc. 95(451), 807–818 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New York (1969)

    Google Scholar 

  • Friedman, J.H.: Multivariate Adaptive Regression Splines. Ann. Stat. 19, 1–141 (1991)

    Article  MATH  Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    Article  MATH  Google Scholar 

  • Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46, 389–422 (2002)

    Article  MATH  Google Scholar 

  • Hajeck, B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13, 311–329 (1988)

    Article  MathSciNet  Google Scholar 

  • Hall, P., Marron, J.: Extent to which least-square cross-validation minimises integrated square error in nonparametric density estimation. Probab. Theory Relat. Fields 74, 567–581 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin, S., Studden, W.J.: Optimal experimental designs. Ann. Math. Stat. 37, 783–815 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  • Kerkyacharian, G., Picard, D.: Regression in random design and warped wavelets. Bernoulli 10(6), 1053–1105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Khuri, A.I., Cornell, J.A.: Response Surfaces: Designs and Analyses. Marcel Dekker, New York (1987)

    MATH  Google Scholar 

  • Kiefer, J., Wolfowitz, J.: Optimum designs in regression problem. Ann. Math. Stat. 30, 271–294 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  • Klinger, A.: Inference in high dimensional generalized linear models based on soft thresholding. J. R. Stat. Soc. B 63(2), 377–392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Lai, T.L., Wei, C.Z.: Least square estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Stat. 10(1), 154–166 (1982)

    Article  MathSciNet  Google Scholar 

  • Liu, Y., Oyet, A.J.: Exact wavelet designs for discrimination. Sankhya 68(4), 569–586 (2006)

    MathSciNet  MATH  Google Scholar 

  • Meyer, Y.: Ondelettes et Opérateurs I. Hermann, Paris (1990)

    MATH  Google Scholar 

  • Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1), 60–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Oyet, A.J., Wiens, D.P.: On exact minimax wavelet designs obtained by simulated annealing. Stat. Probab. Lett. 61, 111–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Oyet, A.J., Wiens, D.P.: Exact wavelet designs for discrimination. Sankhya 68(4), 569–586 (2006)

    MathSciNet  MATH  Google Scholar 

  • Pronzato, L.: Adaptive optimization and D-optimum experimental design. Ann. Stat. 28(6), 1743–1761 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Silverman, B.W.: Some aspects of the spline smoothing approach to nonparametric regression curve fitting. J. R. Stat. Soc. B 47, 1–52 (1985)

    MATH  Google Scholar 

  • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • Wiens, D.P.: Minimax designs for approximately linear regression. J. Stat. Plan. Inference 31, 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, H.: The adaptive Lasso and its Oracle properties. J. Am. Stat. Soc. 101, 1418–1429 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gadat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, S., Déjean, S. & Gadat, S. Adaptive sequential design for regression on multi-resolution bases. Stat Comput 22, 753–772 (2012). https://doi.org/10.1007/s11222-011-9267-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9267-7

Keywords

Navigation