Skip to main content
Log in

A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper is about object deformations observed throughout a sequence of images. We present a statistical framework in which the observed images are defined as noisy realizations of a randomly deformed template image. In this framework, we focus on the problem of the estimation of parameters related to the template and deformations. Our main motivation is the construction of estimation framework and algorithm which can be applied to short sequences of complex and highly-dimensional images. The originality of our approach lies in the representations of the template and deformations, which are defined on a common triangulated domain, adapted to the geometry of the observed images. In this way, we have joint representations of the template and deformations which are compact and parsimonious. Using such representations, we are able to drastically reduce the number of parameters in the model. Besides, we adapt to our framework the Stochastic Approximation EM algorithm combined with a Markov Chain Monte Carlo procedure which was proposed in 2004 by Kuhn and Lavielle. Our implementation of this algorithm takes advantage of some properties which are specific to our framework. More precisely, we use the Markovian properties of deformations to build an efficient simulation strategy based on a Metropolis-Hasting-Within-Gibbs sampler. Finally, we present some experiments on sequences of medical images and synthetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allassonnière, S., Amit, Y., Trouvé, A.: Towards a coherent statistical framework for dense deformable template estimation. J. R. Stat. Soc.: Ser. B Stat. Methodol. 69(1), 3–29 (2007a)

    MathSciNet  Google Scholar 

  • Allassonnière, S., Kuhn, E., Trouvé, A.: Bayesian deformable models building via stochastic approximation algorithm: a convergence study. arXiv:0706.0787 (2007b)

  • Amit, Y., Grenander, U., Piccioni, M.: Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86(414), 376–387 (1991)

    Article  Google Scholar 

  • Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16, 1462–1505 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Atchadé, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11, 815–828 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  • Deriche, R.: Fast algorithms for low-level vision. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 78–87 (1990)

    Article  Google Scholar 

  • Celeux, G., Diebolt, J.: The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem. Comput. Stat. Q. 2, 73–82 (1985)

    Google Scholar 

  • Cuénod, C.A., Fournier, L., Balvay, D., Guinebretiére, J.M.: Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31(2), 188–193 (2006)

    Article  Google Scholar 

  • Delyon, B., Lavielle, M., Moulines, E.: Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27, 94–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  • Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  • Glasbey, C.A., Mardia, K.V.: A penalized likelihood approach to image warping (with discussion). J. R. Stat. Soc. C 63, 465–514 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Grenander, U.: General Pattern Theory. Oxford University Press, London (1994)

    MATH  Google Scholar 

  • Grenander, U., Miller, M.: Computational anatomy: an emerging discipline. Q. Appl. Math. 4, 617–694 (1998)

    MathSciNet  Google Scholar 

  • Judd, R.M., Lugo-Olivieri, C.H., Araj, M., Kondo, T., et al.: Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92(7), 1902–1910 (1995)

    Google Scholar 

  • Kuhl, C.: The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice. Radiology 244(2), 356–378 (2007)

    Article  MathSciNet  Google Scholar 

  • Kuhn, E., Lavielle, M.: Coupling a stochastic approximation version of EM with a MCMC procedure. ESAIM Probab. Stat. 8, 115–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Lavielle, M., Moulines, E.: A simulated annealing version of the EM algorithm for non-Gaussian deconvolution. Stat. Comput. 7, 229–236 (1997)

    Article  Google Scholar 

  • Levine, R., Casella, G.: Optimizing random scan Gibbs samplers. J. Multivar. Anal. 97, 2071–2100 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Mengersen, K.L., Tweedie, R.L.: Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24(1), 101–121 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Miles, K.A.: Perfusion CT for the assessment of tumor vascularity: which protocol? Br. J. Radiol. 76(1), 36–42 (2003)

    Article  MathSciNet  Google Scholar 

  • O’Connor, J.P., Jackson, A., Parker, G.J., Jayson, G.C.: DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 96(2), 189–195 (2007)

    Article  Google Scholar 

  • Padhani, A.R.: Dynamic contrast-enhanced MRI in clinical oncology: current status and future directions. J. Magn. Reson. Imaging 16(4), 407–422 (2002)

    Article  Google Scholar 

  • Wei, G.C., Tanner, M.A.: Calculating the content and boundary of the highest posterior density region via data augmentation. Biometrika 77, 649–652 (1990)

    Article  MathSciNet  Google Scholar 

  • Wintermark, M.: Brain perfusion-CT in acute stroke patients. Eur. Radiol. 15(4), D28–31 (2005)

    Article  Google Scholar 

  • Zahra, M.A., Hollingsworth, K.G., Sala, E., Lomas, D.J., Tan, L.T.: Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol. 8(1), 63–74 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric J. P. Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, F.J.P., Samson, A.M.M. & Cuénod, C.A. A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences. Stat Comput 19, 465 (2009). https://doi.org/10.1007/s11222-008-9106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11222-008-9106-7

Keywords

Navigation