Skip to main content

Advertisement

Log in

The Atmospheric Structure of the Ice Giant Planets from In Situ Measurements by Entry Probes

Space Science Reviews Aims and scope Submit manuscript

Abstract

In situ measurements by an atmospheric entry probe allow for sounding and investigating atmospheric composition, structure and dynamics deep into the atmosphere of a Giant planet. In this paper, we describe an Atmospheric Structure Instrument (ASI) for an entry probe at Uranus and/or Neptune. The scientific objectives, the measurements and the expected results are discussed in the framework of a future opportunity for an NASA-ESA joint mission to the Ice Giant planets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. https://www.lpi.usra.edu/icegiants/mission_study/Full-Report.pdf.

  2. http://sci.esa.int/future-missions-department/61307-cdf-study-report-ice-giants/.

  3. An Electric field mill is an instrument to measure the strength of the electric fields in the atmosphere by means of a rotating shutter or chopped wheel (the “mill”) exposing or shielding electrodes. The electric current, which flows to and from the electrodes, is proportional to the strength of the electric field. This type of instrument can be deployed airborne and flown through anvil head clouds; by monitoring the atmospheric electric fields can be used for lightning protection (e.g. in rocket launch support or outdoor laboratories).

  4. Exosphere is the upper most layer of the atmosphere merging with interplanetary space, where molecules are gravitationally bound to the body. The lower boundary of the exosphere is called the exobase or exopause, and this is the altitude where barometric conditions no longer apply.

References

  • P. Abelson, Voyager 2 at Neptune and Triton. Science 246(4936), 1369 (1989). https://doi.org/10.1126/science.246.4936.1369

    Article  ADS  Google Scholar 

  • A. Aboudan, G. Colombatti, F. Ferri, F. Angrilli, Huygens probe entry trajectory and attitude estimated simultaneously with Titan atmospheric structure by Kalman filtering. Planet. Space Sci. 56, 573–585 (2008)

    ADS  Google Scholar 

  • A. Aboudan, G. Colombatti, C. Bettanini, F. Ferri, S. Lewis, B. Van Hove, O. Karatekin, S. Debei, ExoMars 2016 Schiaparelli module trajectory and atmospheric profiles reconstruction: analysis of the on-board inertial and radar measurements. Space Sci. Rev. 214, 97 (2018). https://doi.org/10.1007/s11214-018-0532-3. ISSN 0038-6308

    Article  ADS  Google Scholar 

  • F. Angrilli, G. Bianchini, S. Debei, G. Fanti, F. Ferri, M. Fulchignoni, B. Saggin, First results of performance test of temperature sensors of HASI instrument on Huygens-Cassini mission, in Proceedings SPIE, vol. 2803-09, Denver, 5–6 August, 1996 (1996), pp. 75–83

    Google Scholar 

  • K. Aplin, R.G. Harrison, Determining solar effects in Neptune’s atmosphere. Nat. Commun. 7, 11976 (2016). https://doi.org/10.1038/ncomms11976

    Article  ADS  Google Scholar 

  • K. Aplin, R.G. Harrison, Solar driven variation in the atmosphere of Uranus. Geophys. Res. Lett. 44, 12,083–12,090 (2017). https://doi.org/10.1002/2017GL075374

    Article  Google Scholar 

  • K. Aplin, T. Nordheim, G. Fischer, A. Konovalenko, V. Zakharenko, Atmospheric electricity at the Ice Giants. Space Sci. Rev. 216, 26 (2020, this issue). https://doi.org/10.1007/s11214-020-00647-0

    Article  ADS  Google Scholar 

  • C.S. Arridge, N. Achilleos, J. Agarwal et al., The science case for an orbital mission to Uranus: exploring the origins and evolution of ice giant planets. Planet. Space Sci. 104, 122 (2014). https://doi.org/10.1016/j.pss.2014.08.009

    Article  ADS  Google Scholar 

  • D.H. Atkinson, O. Mousis, T.R. Spilker et al., Model payload for Ice Giant entry probe missions. Space Sci. Rev. (2020, this issue). https://doi.org/10.1007/s11214-020-00738-y

    Article  Google Scholar 

  • S.K. Atreya, J.J. Ponthieu, Photolysis of methane and the ionosphere of Uranus. Planet. Space Sci. 31, 939–944 (1983)

    ADS  Google Scholar 

  • K.H. Baines, H.B. Hammel, Clouds, hazes, and the stratospheric methane abundance in Neptune. Icarus 109, 20–39 (1994)

    ADS  Google Scholar 

  • K.H. Baines, M.E. Mickelson, L.E. Larson, D.W. Ferguson, The abundances of methane and ortho/para hydrogen on Uranus and Neptune: implications of New Laboratory 4-0 H2 quadrupole line parameters. Icarus 114, 328–340 (1995)

    ADS  Google Scholar 

  • C. Bettanini, M. Fulchignoni, F. Angrilli, P.F. Lion Stoppato, M. Antonello, S. Bastianello, G. Bianchini, G. Colombatti, F. Ferri, E. Flamini, V. Gaborit, A. Aboudan, Sicily 2002 balloon campaign: a test of the HASI instrument. Adv. Space Sci. 33, 1806–1811 (2004)

    ADS  Google Scholar 

  • B. Bézard, P.N. Romani, B.J. Conrath, W.C. Maguire, Hydrocarbons in Neptune’s stratosphere from Voyager infrared observations. J. Geophys. Res. 96, 18 (1991)

    Google Scholar 

  • J. Bishop, S.K. Atreya, F. Herbert, P. Romani, Reanalysis of Voyager 2 UVS occultations at Uranus – hydrocarbon mixing ratios in the equatorial stratosphere. Icarus 88, 448–464 (1990)

    ADS  Google Scholar 

  • J. Bishop, S.K. Atreya, P.N. Romani, B.R. Sandel, F. Herbert, Voyager 2 ultraviolet spectrometer solar occultations at Neptune – constraints on the abundance of methane in the stratosphere. J. Geophys. Res. 97, 11 (1992)

    Google Scholar 

  • A.L. Broadfoot, S.K. Atreya, J.L. Bertaux, J.E. Blamont, A.J. Dessler, T.M. Donahue, W.T. Forrester, D.T. Hall, F. Herbert, J.B. Holbert, J.B. Holberg, D.M. Hunter, V.A. Krasnoposky, S. Linick, J.I. Lunine, J.C. McConnell, H.W. Moos, B.R. Sandel, N.M. Schneider, D.E. Shemansky, G.R. Smith, D.F. Strobel, R.V. Yelle, Ultraviolet spectrometer observations of Neptune and Triton. Science 246(4936), 1459–1466 (1989). https://doi.org/10.1126/science.246.4936.1459

    Article  ADS  Google Scholar 

  • M. Burgdorf, G. Orton, J. van Cleve, V. Meadows, J. Houck, Detection of new hydrocarbons in Uranus’ atmosphere by infrared spectroscopy. Icarus 184, 634–637 (2006)

    ADS  Google Scholar 

  • R.P. Butler, S.S. Vogt, G.W. Marcy, D.A. Fischer, J.T. Wright, G.W. Henry, G. Laughlin, J.J. Lissauer, A Neptune-mass planet orbiting the nearby M dwarf GJ 436. Astrophys. J. 617, 580–588 (2004)

    ADS  Google Scholar 

  • T. Cavalié et al., The first submillimeter observation of CO in the stratosphere of Uranus. Astron. Astrophys. 562, A33 (2014)

    Google Scholar 

  • T. Cavalié, O. Venot, F. Selsis, F. Hersant, P. Hartogh, J. Leconte, Thermochemistry and vertical mixing in the tropospheres of Uranus and Neptune: how convection inhibition can affect the derivation of deep oxygen abundances. Icarus 291, 1–16 (2017)

    ADS  Google Scholar 

  • T. Cavalié, O. Venot, R. Bounaceur, J. Leconte, M. Dobrijevic, V. Hue, Y. Miguel, P. Wurz, O. Mousis, The deep composition of Uranus and Neptune from in situ exploration and thermochemical modeling. Space Sci. Rev. 216, 58 (2020, this issue). https://doi.org/10.1007/s11214-020-00677-8

    Article  ADS  Google Scholar 

  • G. Colombatti, P. Withers, F. Ferri, A. Aboudan, C. Bettanini, V. Gaborit, J.C. Zarnecki, A.J. Ball, B. Hathi, M.R. Leese, M.C. Towner, A.M. Harri, T. Makinen, P.F. Lion Stoppato, F. Angrilli, M. Fulchignoni, Reconstruction of the trajectory of the Huygens probe using the Huygens Atmospheric Structure Instrument (HASI). Planet. Space Sci. 56, 586–600 (2008)

    ADS  Google Scholar 

  • B.J. Conrath, F.M. Flasar, P.J. Gierasch, Thermal structure and dynamics of Neptune’s atmosphere from Voyager measurements. J. Geophys. Res. 96, 18 (1991)

    Google Scholar 

  • G. Déprez, F. Montmessin, O. Witasse, L. Lapauw, F. Vivat et al., Micro-Ares, an electric field sensor for ExoMars 2016, in European Planetary Science Congress 2015, Nantes, France (2015). EPSC2015-508. insu-01218682

    Google Scholar 

  • T. Encrenaz, E. Lellouch, P. Drossart, H. Feuchtgruber, G.S. Orton, S.K. Atreya, First detection of CO in Uranus. Astron. Astrophys. 413, L5–L9 (2004)

    ADS  Google Scholar 

  • F. Esposito, S. Debei, C. Bettanini, C. Molfese, I. Arruego Rodríguez, G. Colombatti, A-M. Harri, F. Montmessin, C. Wilson, A. Aboudan, P. Schipani, L. Marty, F.J. Álvarez, V. Apestigue, G. Bellucci, J-J. Berthelier, J.R. Brucato, S.B. Calcutt, S. Chiodini, F. Cortecchia, F. Cozzolino, F. Cucciarrè, N. Deniskina, G. Déprez, G. Di Achille, F. Ferri, F. Forget, G. Franzese, E. Friso, M. Genzer, R. Hassen- Kodja, H. Haukka, M. Hieta, J.J. Jiménez, J-L. Josset, H. Kahanpää, O. Karatekin, G. Landis, L. Lapauw, R. Lorenz, J. Martinez-Oter, V. Mennella, D. Möhlmann, D. Moirin, R. Molinaro, T. Nikkanen, E. Palomba, M.R. Patel, J-P. Pommereau, C.I. Popa, S. Rafkin, P. Rannou, N.O. Renno, J. Rivas, W. Schmidt, E. Segato, S. Silvestro, A. Spiga, D. Toledo, R. Trautner, F. Valero, L. Vázquez, F. Vivat, O. Witasse, M. Yela, R. Mugnuolo, E. Marchetti, S. Pirrotta, The DREAMS experiment onboard the Schiaparelli Module of the ExoMars 2016 mission: 1 design, performances and expected results. Space Sci. Rev. 214, 103 (2018). https://doi.org/10.1007/s11214-018-0535-0. ISSN 0038-6308

    Article  ADS  Google Scholar 

  • F. Ferri, F. Angrilli, G. Bianchini, M. Fulchignoni (the HASI team), The Huygens Atmospheric Structure Instrument of Huygens probe on Cassini mission. Acta Astronaut. 50(4), 249–255 (2002)

    ADS  Google Scholar 

  • F. Ferri, G. Colombatti, C. Bettanini, M. Antonello, S. Bastianello, A. Aboudan, P.F. Lion Stoppato, G. Bianchini, F. Angrilli, E. Flamini, V. Gaborit, M. Fulchignoni, Stratospheric balloon flight experiment campaign for the simulation of the Huygens probe mission: verification of HASI (Huygens Atmospheric Structure Instrument) performance in terrestrial atmosphere, in per AIDAA 2003: XVII Congresso Nazionale AIDAA, Roma, 15–19 September (2003)

    Google Scholar 

  • F.M. Flasar, B.J. Conrath, P.J. Gierasch et al., Voyager infrared observations of Uranus’ atmosphere: thermal structure and dynamics. J. Geophys. Res. 92(A13), 15011–15018 (1987)

    ADS  Google Scholar 

  • L.N. Fletcher, I. de Pater, G.S. Orton, H.B. Hammel, M.L. Sitko, P.G.J. Irwin, Neptune at summer solstice: zonal mean temperatures from ground-based observations, 2003–2007. Icarus 231, 146–167 (2014)

    ADS  Google Scholar 

  • R.G. French, C.A. McGhee, B. Sicardy, Neptune’s stratospheric winds from three central flash occultations. Icarus 136, 27–49 (1998)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Angrilli, G. Bianchini, A. Bar-Nun, M.A. Barucci, W. Borucki, M. Coradini, A. Coustenis, F. Ferri, R.J. Grard, M. Hamelin, A.M. Harri, G.W. Leppelmeier, J.J. Lopez-Moreno, J.A.M. McDonnell, C. McKay, F.H. Neubauer, A. Pedersen, G. Picardi, V. Pirronello, R. Pirjola, R. Rodrigo, C. Schwingenschuh, A. Seiff, H. Svedhem, E. Thrane, V. Vanzani, G. Visconti, J. Zarnecki, The Huygens Atmospheric Structure Instrument (HASI). ESA SP 1711, 163–176 (1997)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilli et al., The characterisation of Titan’s atmospheric physical properties by the Huygens Atmospheric Structure Instrument (HASI). Space Sci. Rev. 104, 395–431 (2002)

    ADS  Google Scholar 

  • M. Fulchignoni, A. Aboudan, F. Angrilli, M. Antonello, S. Bastianello, C. Bettanini, G. Bianchini, G. Colombatti, F. Ferri, E. Flamini, V. Gaborit, N. Ghafoor, B. Hathi, A-M. Harri, A. Lehto, P.F. Lion Stoppato, M.R. Patel, J.C. Zarnecki, A stratospheric balloon experiment to test the Huygens Atmospheric Structure Instrument (HASI). Planet. Space Sci. 52, 867–880 (2004)

    ADS  Google Scholar 

  • M. Fulchignoni, F. Ferri, F. Angrilli, A.J. Ball, A. Bar-Nun, M.A. Barucci, C. Bettanini, G. Bianchini, W. Borucki, G. Colombatti, M. Coradini, A. Coustenis, S. Debei, P. Falkner, G. Fanti, E. Flamini, V. Gaborit, R. Grard, M. Hamelin, A.M. Harri, B. Hathi, I. Jernej, M.R. Leese, A. Lehto, P.F. Lion Stoppato, J.J. López-Moreno, T. Mäkinen, J.A.M. McDonnell, C.P. McKay, G. Molina-Cuberos, F.M. Neubauer, V. Pirronello, R. Rodrigo, B. Saggin, K. Schwingenschuh, A. Seiff, F. Simões, H. Svedhem, T. Tokano, M.C. Towner, R. Trautner, P. Withers, J.C. Zarnecki, In situ measurements of the physical characteristics of Titan’s atmosphere and surface. Nature 438, 785–791 (2005). https://doi.org/10.1038/nature04314

    Article  ADS  Google Scholar 

  • V. Gaborit, M. Fulchignoni, G. Colombatti, F. Ferri, C. Bettanini, Huygens/HASI 2002 balloon test campaign: probe trajectory and atmospheric vertical profiles reconstruction. Planet. Space Sci. 52, 887–895 (2004)

    ADS  Google Scholar 

  • S.G. Gibbard, E.H. Levy, J.I. Lunine, I. de Pater, Lightning on Neptune. Icarus 139, 227–234 (1999)

    ADS  Google Scholar 

  • S.G. Gibbard, H. Roe, I. de Pater, B. Macintosh, D. Gavel, C.E. Max, K.H. Baines, A. Ghez, High-resolution infrared imaging of Neptune from the Keck telescope. Icarus 156, 1–15 (2002)

    ADS  Google Scholar 

  • S.G. Gibbard, I. de Pater, H.G. Roe, S. Martin, B.A. Macintosh, C.E. Max, The altitude of Neptune cloud features from high-spatial-resolution near-infrared spectra. Icarus 166, 359–374 (2003)

    ADS  Google Scholar 

  • J. Gómez-Elvira, C. Armiens, L. Castañer, M. Domínguez, M. Genzer, F. Gómez, R. Haberle, A.-M. Harri, V. Jiménez, H. Kahanpää, L. Kowalski, A. Lepinette, J. Martín, J. Martínez-Frías, I. McEwan, L. Mora, J. Moreno, S. Navarro, M.A. de Pablo, V. Peinado, A. Peña, J. Polkko, M. Ramos, N.O. Renno, J. Ricart, M. Richardson, J. Rodríguez-Manfredi, J. Romeral, E. Sebastián, J. Serrano, M. de la Torre Juárez, J. Torres, F. Torrero, R. Urquí, L. Vázquez, T. Velasco, J. Verdasca, M.-P. Zorzano, J. Martín-Torres, REMS: the environmental sensor suite for the Mars science laboratory rover. Space Sci. Rev. 170, 583–640 (2012). https://doi.org/10.1007/s11214-012-9921-1

    Article  ADS  Google Scholar 

  • R. Grard et al., Electric properties and related physical characteristics of the atmosphere and surface of Titan. Planet. Space Sci. 54, 1124–1136 (2006)

    ADS  Google Scholar 

  • T. Guillot, Condensation of methane, ammonia, and water and the inhibition of convection in giant planets. Science 269(5231), 1697–1699 (1995). https://doi.org/10.1126/science.7569896

    Article  ADS  Google Scholar 

  • T. Guillot, The interiors of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530 (2005)

    ADS  Google Scholar 

  • D.A. Gurnett, W.S. Kurth, I.H. Cairns, L.J. Granroth, Whistlers in Neptune’s magnetosphere – evidence of atmospheric lightning. J. Geophys. Res. 95, 20967–20976 (1990)

    ADS  Google Scholar 

  • A.-M. Harri, T. Makinen, A. Lehto, H. Kananpaa, T. Sili, Vertical pressure profile of Titan – observations of the PPI/HASI instrument. Planet. Space Sci. 57, 1117–1124 (2006). https://doi.org/10.1016/j.pss.2006.05.037

    Article  ADS  Google Scholar 

  • R.G. Harrison, G.J. Marlton, Fair weather electric field meter for atmospheric science platforms. J. Electrost. 107, 103489 (2020)

    Google Scholar 

  • B. Hathi, A.J. Ball, G. Colombatti, F. Ferri, M.R. Leese, M.C. Towner, P. Withers, M. Fulchignoni, J.C. Zarnecki, Huygens HASI servo accelerometer: a review and lesson learned. Planet. Space Sci. 57, 1321–1333 (2009)

    ADS  Google Scholar 

  • R. Helled, J.D. Anderson, M. Podolak et al., Interior models of Uranus and Neptune. Astrophys. J. 726, 15 (2011). https://doi.org/10.1088/0004-637X/726/1/15

    Article  ADS  Google Scholar 

  • F. Herbert, B.R. Sandel, R.V. Yelle, J.B. Holberg, A.L. Broadfoot, D.E. Shemansky, S.K. Atreya, P.N. Romani, The upper atmosphere of Uranus – EUV occultations observed by Voyager 2. J. Geophys. Res. 92, 15093–15109 (1987)

    ADS  Google Scholar 

  • M.D. Hofstadter, A. Simon, S. Atreya et al., Uranus and Neptune missions: a study in advance of the next Planetary Science Decadal Survey. Planet. Space Sci. 177, 104680 (2019). https://doi.org/10.1016/j.pss.2019.06.004

    Article  Google Scholar 

  • C. Holstein-Rathlou, A. Maue, P. Withers, Atmospheric studies from the Mars Science Laboratory Entry, Descent and Landing atmospheric structure reconstruction. Planet. Space Sci. 120, 15–23 (2016)

    ADS  Google Scholar 

  • W.B. Hubbard, M. Podolak, D.J. Stevenson, The interior of Neptune, in Neptune and Triton, ed. by D.P. Cruikshank (University of Arizona Press, Tucson, 1995)

    Google Scholar 

  • R. Hueso, A. Sanchez-Lavega, Atmospheric dynamics and vertical structure of Uranus and Neptune’s weather layers. Space Sci. Rev. 215, 52 (2019). https://doi.org/10.1007/s11214-019-0618-6

    Article  ADS  Google Scholar 

  • R. Hueso, I. dePater, A. Simon, A. Sánchez-Lavega, M. Delcroix, M.H. Wong, J.W. Tollefson, C. Baranec, K. deKleer, S.H. Luszcz-Cook, G.S. Orton, H.B. Hammel, J.M. Gómez-Forrellad, I. Ordonez-Etxeberria, L. Sromovsky, P. Fry, F. Colas, J.F. Rojas, S. Pérez-Hoyos, P. Gorczynski, J. Guarro, W. Kivits, P. Miles, D. Millika, P. Nicholas, J. Sussenbach, A. Wesley, K. Sayanagi, S.M. Ammons, E.L. Gates, D. Gavel, E. Victor Garcia, N.M. Law, I. Mendikoa, R. Riddle, Neptune long-lived atmospheric features in 2013–2015 from small (28-cm) to large (10-m) telescopes. Icarus 295, 89–109 (2017)

    ADS  Google Scholar 

  • P. Irwin, Giant Planets of Our Solar System: Atmosphere, Composition, and Structure (Springer, Chichester, 2009)

    Google Scholar 

  • P.G.J. Irwin, N.A. Teanby, G.R. Davis, L.N. Fletcher, G.S. Orton, D. Tice, J. Hurley, S.B. Calcutt, Multispectral imaging observations of Neptune’s cloud structure with Gemini-North. Icarus 216, 141–158 (2011)

    ADS  Google Scholar 

  • P.G.J. Irwin, L.N. Fletcher, P.L. Read, D. Tice, I. de Pater, G.S. Orton, N.A. Teanby, G.R. Davis, Spectral analysis of Uranus’ 2014 bright storm with VLT/SINFONI. Icarus 264, 72–89 (2016a)

    ADS  Google Scholar 

  • P.G.J. Irwin, L.N. Fletcher, D. Tice, S.J. Owen, G.S. Orton, N.A. Teanby, G.R. Davis, Time variability of Neptune’s horizontal and vertical cloud structure revealed by VLT/SINFONI and Gemini/NIFS from 2009 to 2013. Icarus 271, 418–437 (2016b)

    ADS  Google Scholar 

  • M.L. Kaiser, M.D. Desch, W.M. Farrell, P. Zarka, Restrictions on the characteristics of Neptunian lightning. J. Geophys. Res. 96, 19 (1991)

    Google Scholar 

  • E. Karkoschka, Clouds of high contrast on Uranus. Science 280, 570 (1998)

    ADS  Google Scholar 

  • E. Karkoschka, Uranus’ southern circulation revealed by Voyager 2: unique characteristics. Icarus 250, 294–307 (2015)

    ADS  Google Scholar 

  • E. Karkoschka, M. Tomasko, The haze and methane distributions on Uranus from HST-STIS spectroscopy. Icarus 202, 287–309 (2009)

    ADS  Google Scholar 

  • E. Karkoschka, M.G. Tomasko, The haze and methane distributions on Neptune from HST-STIS spectroscopy. Icarus 211, 780–797 (2011)

    ADS  Google Scholar 

  • A.L. Lane, C.W. Hord, R.A. West, L.W. Esposito, K.E. Simmons, R.M. Nelson, B.D. Wallis, B.J. Buratti, L.J. Horn, A.L. Graps, W.R. Pryor, Photometry from Voyager 2: initial results from the Uranian atmosphere, satellites and rings. Science 233(4759), 65–70 (1986). https://doi.org/10.1126/science.233.4759.65

    Article  ADS  Google Scholar 

  • J.P. Lebreton, O. Witasse, C. Sollazzo et al., An overview of the descent and landing of the Huygens probe on Titan. Nature 438, 758–764 (2005)

    ADS  Google Scholar 

  • E. Lellouch, R. Moreno, G.S. Orton, H. Feuchtgruber, T. Cavalié, J.I. Moses, P. Hartogh, C. Jarchow, H. Sagawa, New constraints on the CH4 vertical profile in Uranus and Neptune from Herschel observations. Astron. Astrophys. 579, A121 (2015)

    ADS  Google Scholar 

  • G.F. Lindal, The atmosphere of Neptune – an analysis of radio occultation data acquired with Voyager 2. Astron. J. 103, 967–982 (1992)

    ADS  Google Scholar 

  • G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, The atmosphere of Uranus – results of radio occultation measurements with Voyager 2. J. Geophys. Res. 92, 14987–15001 (1987)

    ADS  Google Scholar 

  • G.F. Lindal, J.R. Lyons, D.N. Sweetnam, V.R. Eshleman, D.P. Hinson, The atmosphere of Neptune – results of radio occultation measurements with the Voyager 2 spacecraft. Geophys. Res. Lett. 17, 1733–1736 (1990)

    ADS  Google Scholar 

  • P.F. Lion Stoppato, F. Ferri, C. Bettanini, G. Colombatti, M. Antonello, S. Bastianello, A. Aboudan, E. Flamini, V. Gaborit, J.C. Zarnecki, B. Hathi, A.M. Harri, A. Lehto, G. Bianchini, F. Angrilli, M. Fulchignoni, Stratospheric balloon flight experiment campaign for the simulation of the Huygens probe mission: verification of HASI performance in terrestrial atmosphere, in Proceedings of Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal, October 6–9, 2003. ESA-SP, vol. 544 (2004), pp. 303–309

    Google Scholar 

  • J.J. López-Moreno, G.J. Molina-Cuberos, M. Hamelin, V.J.G. Brown, F. Ferri, R. Grard, I. Jernej, J.M. Jerónimo, G.W. Leppelmeier, T. Mäkinen, R. Rodrigo, L. Sabau, K. Schwingenschuh, H. Svedhem, M. Fulchignoni, The COMAS SOLA mission to test the Huygens/HASI instrument on board a stratospheric balloon. Adv. Space Sci. 30(5), 1359–1364 (2002)

    ADS  Google Scholar 

  • J.A. Magalhães, J.T. Schofield, A. Seiff, Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res. 104, 8943–89455 (1999)

    ADS  Google Scholar 

  • T. Makinen, A-M. Harri, T. Tokano, H. Savijarvi, T. Siili, F. Ferri, Vertical atmospheric flow on Titan as measured by the HASI instrument. Geophys. Res. Lett. 33, L21803 (2006). https://doi.org/10.1029/2006GL026982

    Article  ADS  Google Scholar 

  • M. Marley, C.P. McKay, Thermal structure of Uranus’ atmosphere. Icarus 138, 268–286 (1999)

    ADS  Google Scholar 

  • A. Marten, D. Gautier, T. Owen, D.B. Sanders, H.E. Matthews, S.K. Atreya, R.P.J. Tilanus, J.R. Deane, First observations of CO and HCN on Neptune and Uranus at millimeter wavelengths and the implications for atmospheric chemistry. Astrophys. J. 406, 285–297 (1993)

    ADS  Google Scholar 

  • C.E. Max et al., Cloud structures on Neptune observed with Keck telescope adaptive optics. Astron. J. 125, 364–375 (2003)

    ADS  Google Scholar 

  • E.D. Miner, Uranus – The Planet, Rings and Satellite (Ellis Horwood/Prentice-Hall, New York, 1990). 334 pp.

    Google Scholar 

  • J.I. Moses, M. Allen, Y.L. Yung, Hydrocarbon nucleation and aerosol formation in Neptune’s atmosphere. Icarus 99, 318–346 (1992)

    ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, T. Cavalié et al., Scientific rationale for Uranus and Neptune in situ explorations. Planet. Space Sci. 155, 12 (2018). https://doi.org/10.1016/j.pss.2017.10.005

    Article  ADS  Google Scholar 

  • O. Mousis, D.H. Atkinson, R. Ambrosi, S. Atreya, D. Banfield, S. Barabash, M. Blanc, T. Cavalié, A. Coustenis, M. Deleuil, G. Durry, F. Ferri, L. Fletcher, T. Fouchet, T. Guillot, P. Hartogh, R. Hueso, M. Hofstadter, J.P. Lebreton, K.E. Mandt, H. Rauer, P. Rannou, J.B. Renard, A. Sanchez-Lavega, K. Sayanagi, A. Simon, T. Spilker, E. Venkatapathy, J.H. Waite, P. Wurtz, In situ exploration of the Giant Planets. Exp. Astron. (2020, submitted). ESA Voyage 2050 White paper 2019. https://www.cosmos.esa.int/web/voyage-2050/white-papers

  • N. Nettelmann, R. Helled, J.J. Fortney et al., New indication for a dichotomy in the interior structure of Uranus and Neptune from the application of modified shape and rotation data. Planet. Space Sci. 77, 143 (2013). https://doi.org/10.1016/j.pss.2012.06.019

    Article  ADS  Google Scholar 

  • G.S. Orton, L.N. Fletcher, J.I. Moses et al., Mid-infrared spectroscopy of Uranus from the Spitzer Infrared Spectrometer: 1. Determination of the mean temperature structure of the upper troposphere and stratosphere. Icarus 243, 494 (2014a)

    ADS  Google Scholar 

  • G.S. Orton, J.I. Moses, L.N. Fletcher, A.K. Mainzer, D. Hines, H.B. Hammel, J. Martin- Torres, M. Burgdorf, C. Merlet, M.R. Line, Mid-infrared spectroscopy of Uranus from the Spitzer infrared spectrometer: 2. Determination of the mean composition of the upper troposphere and stratosphere. Icarus 243, 471–493 (2014b)

    ADS  Google Scholar 

  • J.C. Pearl, B.J. Conrath, The albedo, effective temperature, and energy balance of Neptune, as determined from Voyager data. J. Geophys. Res. 96, 18921 (1991). https://doi.org/10.1029/91JA01087

    Article  ADS  Google Scholar 

  • F. Roddier, C. Roddier, J.E. Graves, M.J. Northcott, T. Owen, NOTE: Neptune’s cloud structure and activity: ground-based monitoring with adaptive optics. Icarus 136, 168–172 (1998)

    ADS  Google Scholar 

  • J.A. Rodriguez-Manfredi, F. Gomez-Gomez, J. Gomez-Elvira, S. Navarro, O. Prieto-Ballesteros, E. Sebastian, M. de la Torre, J.T. Schofield, L.K. Tamppari, I. Arruego, N.T. Bridges, P.G. Conrad, M. Smith, M. Genzer, A-M. Harri, M. Lemmon, G. Martinez, C. Newman, A. Sanchez-Lavega, M. Ramos, A. Saiz-Lopez (the MEDA team), Atmospheric science with the Mars 2020 rover – the MEDA instrument, in 6th Mars Atmosphere Modelling and Observations Workshop, Granada, Spain, 17–20 January (2017). www-mars.lmd.jussieu.fr

    Google Scholar 

  • P.N. Romani, J. Bishop, B. Bezard, S. Atreya, Methane photochemistry on Neptune – ethane and acetylene mixing ratios and haze production. Icarus 106, 442 (1993)

    ADS  Google Scholar 

  • F. Roques, B. Sicardy, R.G. French, W.B. Hubbard, A. Barucci, P. Bouchet, A. Brahic, J.-A. Gehrels, T. Gehrels, I. Grenier, T. Le Bertre, J. Lecacheux, J.P. Maillard, R.A. McLaren, C. Perrier, F. Vilas, M.D. Waterworth, Neptune’s upper stratosphere, 1983–1990: ground-based stellar occultation observations III. Temperature profiles. Astron. Astrophys. 288, 985–1011 (1994)

    ADS  Google Scholar 

  • G. Ruffino, A. Castelli, P. Coppa, C. Cornaro, S. Foglietta, M. Fulchignoni, F. Gori, P. Salvini, The temperature sensor on the Huygens probe for the Cassini mission: design, manufacture, calibration and tests of the laboratory prototype. Planet. Space Sci. 44(10), 1149–1162 (1996)

    ADS  Google Scholar 

  • G. Saavedra Criado, S. Bayon, P. Falkner, A. Stankov, O. Witasse, Study on ESA contribution to NASA-led Ice Giants mission, in 16th International Planetary Probe Workshop (IPPW2019), Oxford, UK, 6–12 July (2019)

    Google Scholar 

  • B. Saggin, F. Angrilli, G. Bianchini, S. Debei, G. Fanti, F. Ferri, Analysis of dynamic performances of HASI temperature sensor during the entry in the Titan atmosphere. Planet. Space Sci. 46(9/10), 1325–1332 (1998)

    ADS  Google Scholar 

  • B. Saggin, S. Debei, M. Zaccariotto, Dynamic error correction of a thermometer for atmospheric measurements. Measurement 30, 223–230 (2001). https://doi.org/10.1016/S0263-2241(01)00015-X

    Article  ADS  Google Scholar 

  • A. Sanchez-Lavega, Gas giants, in Zonal Jets, Occurrence, Genesis. Science (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  • A. Seiff, D.B. Kirk, Structure of Mars’ atmosphere up to 100 km from the entry measurements of Viking 2. Science 194, 1300–1303 (1976)

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977)

    ADS  Google Scholar 

  • A. Seiff, T.C.D. Knight, The Galileo Probe Atmosphere Structure Instrument. Space Sci. Rev. 60, 203 (1992). https://doi.org/10.1007/BF00216855

    Article  ADS  Google Scholar 

  • A. Seiff, D.W. Juergens, J.E. Lepetich, Atmosphere structure instruments on the four Pioneer Venus entry probes. IEEE Trans. Geosci. Remote Sens. GE-18(1), 105–111 (1980a)

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, R.E. Young, R.C. Blanchard, J.T. Findlay, G.M. Kelly, S.C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations – results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933 (1980b)

    ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, T.C.D. Knight, J.D. Mihalov et al., Structure of the atmosphere of Jupiter: Galileo probe measurements. Science 272, 844–845 (1996). https://doi.org/10.1126/science.272.5263.844

    Article  ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, T.C.D. Knight, R.E. Young, J.D. Mihalov, L. Young, F.S. Milos, G. Schubert, R.C. Blanchard, D. Atkinson, Thermal structure of Jupiter’s atmosphere near the edge of a 5 μm hot spot in the north equatorial belt. J. Geophys. Res. 103, 22857–22889 (1998)

    ADS  Google Scholar 

  • B. Sicardy, F. Ferri, F. Roques, N. Brosh, Y. Nevo, W.B. Hubbard, H.R. Reitsema, C. Blanco, S. Cristaldi, E. Carreira, F. Rossi, J. Lecacheux, S. Pau, W. Beisker, C. Bittner, H.-J. Bode, M. Bruns, H. Denzau, M. Nezel, E. Riedel, H. Struckmann, G. Appleby, R.W. Forrrest, I.K.M. Nicolson, R. Miles, A.J. Hollis, The structure of Titan’s stratosphere from the 28 Sgr occultation. Icarus 142, 357–390 (1999)

    ADS  Google Scholar 

  • B. Sicardy, F. Colas, T. Widemann, A. Bellucci, W. Beisker, M. Kretlow, F. Ferri et al., The two Titan stellar occultations of 14 November 2003. J. Geophys. Res. 111, E11S91 (2006). https://doi.org/10.1029/2005JE002624

    Article  ADS  Google Scholar 

  • F. Simoes, R. Pfaff, M. Hamelin, J. Klenzing, H. Freudenreich, C. Beghin, J.J. Berthelier, K. Bromund, R. Grard, J.J. Lebreton, S. Martin, D. Rowland, D. Sentmann, Y. Takahashi, Y. Yair, Using Schumann resonance measurements for constraining the water abundance of the Giant Planets – implication for the Solar System’s formation. Astrophys. J. 750, 85 (2012). https://doi.org/10.1088/0004-637X/750/1/85

    Article  ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, R.F. Beebe, D. Bliss, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, S.A. Collins, A.F. Cook II, J.N. Cuzzi, G.E. Danielson, M.E. Davies, T.E. Dowling, D. Godfrey, C.J. Hansen, C. Harris, E. Hunt, A.P. Ingersoll, T.V. Johnson, R.J. Krauss, H. Masursky, D. Morrison, T. Owen, J.B. Plescia, J.B. Pollack, C.C. Porco, K. Rages, C. Sagan, E.M. Shoemaker, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, P. Thomas, W.R. Thompson, J. Veverka, Voyager 2 in the Uranian system: imaging science results. Science 233(4759), 43–64 (1986). https://doi.org/10.1126/science.233.4759.43

    Article  ADS  Google Scholar 

  • B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevsky, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune: imaging science results. Science 246(4936), 1422–1449 (1989). https://doi.org/10.1126/science.246.4936.1422

    Article  ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, Dynamics of cloud feature on Uranus. Icarus 179, 459–484 (2005). https://doi.org/10.1016/j.icarus.2005.07.022

    Article  ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, Spatially resolved cloud structure on Uranus: implications of near-IR adaptive optics imaging. Icarus 192, 527–557 (2007). https://doi.org/10.1016/j.icarus.2007.07.017

    Article  ADS  Google Scholar 

  • L.A. Sromovsky, S.S. Limaye, P.M. Fry, Dynamics of Neptune’s major cloud features. Icarus 105, 110–141 (1993)

    ADS  Google Scholar 

  • L.A. Sromovsky, S.S. Limaye, P.M. Fry, Clouds and circulation on Neptune: implications of 1991 HST observations. Icarus 118, 25–38 (1995)

    ADS  Google Scholar 

  • L.A. Sromovsky, J.R. Spencer, K.H. Baines, P.M. Fry, Ground-based observations of cloud features on Uranus. Icarus 146, 307–311 (2000). https://doi.org/10.1006/icar.2000.6434

    Article  ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, T.E. Dowling, K.H. Baines, S.S. Limaye, Coordinated 1996 HST and IRTF imaging of Neptune and Triton. III. Neptune’s atmospheric circulation and cloud structure. Icarus 149, 459–488 (2001)

    ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, H.B. Hammel, W.M. Ahue, I. de Pater, K.A. Rages, M.R. Showalter, M.A. van Dam, Uranus at equinox: cloud morphology and dynamics. Icarus 203, 265–286 (2009)

    ADS  Google Scholar 

  • L.A. Sromovsky, P.M. Fry, J.H. Kim, Methane on Uranus: the case for a compact CH4 cloud layer at low latitudes and a severe CH 4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy. Icarus 215, 292–312 (2011)

    ADS  Google Scholar 

  • L.A. Sromovsky, I. de Pater, P.M. Fry, H.B. Hammel, P. Marcus, High S/N Keck and Gemini AO imaging of Uranus during 2012–2014: new cloud patterns, increasing activity, and improved wind measurements. Icarus 258, 192–223 (2015)

    ADS  Google Scholar 

  • M.H. Stevens, D.F. Strobel, F. Herbert, An analysis of the Voyager 2 ultraviolet spectrometer occultation data at Uranus: inferring heat sources and model atmospheres. Icarus 101, 45–63 (1993)

    ADS  Google Scholar 

  • E.C. Stone, The Voyager 2 encounter with Uranus. J. Geophys. Res. 92(A13), 14,873–14,876 (1987)

    ADS  Google Scholar 

  • P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A.-M. Harri, C.F. Lange, Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. 113, E00A10 (2008). https://doi.org/10.1029/2007JE003015

    Article  ADS  Google Scholar 

  • P.A. Taylor, H. Kahanpää, W. Weng, A. Akingunola, C. Cook, M. Daly, C. Dickinson, A-M.H.D. Hill, V. Hipkin, J. Polkko, J. Whiteway, On pressure measurement and seasonal pressure variations during the Phoenix mission. J. Geophys. Res. 115, E00E15 (2010). https://doi.org/10.1029/2009JE003422

    Article  Google Scholar 

  • K. Uckert, N.J. Chanover, C.B. Olkin, L.A. Young, H.B. Hammel, C. Miller, J.M. Bauer, An investigation of the temperature variations in Neptune’s upper stratosphere including a July 2008 stellar occultation event. Icarus 232, 22–33 (2014)

    ADS  Google Scholar 

  • R.A. West, A.L. Lane, C.W. Hord, L.W. Esposito, K.E. Simmons, R.M. Nelson, B.D. Wallis, Temperature and aerosol structure of the nightside Uranian stratosphere from Voyager 2 photopolarimeter stellar occultation measurements. J. Geophys. Res. 92(A13), 15,030–15,036 (1987)

    ADS  Google Scholar 

  • P. Withers, D.C. Catling, Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett. 37, L24204 (2010). https://doi.org/10.1029/2010GL045382

    Article  ADS  Google Scholar 

  • P. Withers, M.D. Smith, Atmospheric entry profiles from the Mars Exploration Rovers Spirit and Opportunity. Icarus 185(1), 133–142 (2006)

    ADS  Google Scholar 

  • P. Wurz, J.H. Waite, S. Barabash, Chemical and isotopic composition measurements on atmospheric probes. Space Sci. Rev. 216, 57 (2020, this issue). https://doi.org/10.1007/s11214-020-00684-9

    Article  ADS  Google Scholar 

  • L. Young, R.V. Yelle, R. Young, A. Seiff, D.B. Kirk, Gravity waves in Jupiter’s thermosphere. Science 276(5309), 108–111 (1997). https://doi.org/10.1126/science.276.5309.108

    Article  ADS  Google Scholar 

  • L.A. Young, A.S. Bosh, M. Buie, J.L. Elliot, L.H. Wasserman, Uranus after solstice: results from the 1998 November 6 occultation. Icarus 153, 236–247 (2001)

    ADS  Google Scholar 

  • L. Young, R.V. Yelle, R. Young, A. Seiff, D.B. Kirk, Gravity waves in Jupiter’s stratosphere, as measured by the Galileo ASI experiment. Icarus 173, 185–199 (2005)

    ADS  Google Scholar 

  • P. Zarka, B.M. Pedersen, Radio detection of Uranian lightning by Voyager 2. Nature 323, 605–608 (1986)

    ADS  Google Scholar 

  • J.C. Zarnecki, F. Ferri et al., In-flight performance of the HASI accelerometer and implications for results at Titan. ESA SP 544, 71–76 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge all the support our national space agencies (ASI, CNES, FMI, UKSA) and ESA is ensuring and will grant us in order to achieve this international space endeavour. We would like also to thank the ESA M* Ice Giant CDF (Critical Design Facility) study team for technical data and information on the atmospheric entry probe for the definition of the mission configuration, timeline and IG-ASI operations and duty cycle.

Author information

Authors and Affiliations

Authors

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In Situ Exploration of the Ice Giants: Science and Technology

Edited by Olivier J. Mousis and David H. Atkinson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferri, F., Colombatti, G., Aboudan, A. et al. The Atmospheric Structure of the Ice Giant Planets from In Situ Measurements by Entry Probes. Space Sci Rev 216, 118 (2020). https://doi.org/10.1007/s11214-020-00749-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00749-9

Keywords

Navigation