Skip to main content
Log in

Plasma Wave Investigation (PWI) Aboard BepiColombo Mio on the Trip to the First Measurement of Electric Fields, Electromagnetic Waves, and Radio Waves Around Mercury

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Plasma Wave Investigation (PWI) aboard the BepiColombo Mio (Mercury Magnetospheric Orbiter, MMO) will enable the first observations of electric fields, plasma waves, and radio waves in and around the Hermean magnetosphere and exosphere. The PWI has two sets of receivers (EWO with AM2P, SORBET) connected to two electric field sensors (MEFISTO and WPT) and two magnetic field sensors (SCM: LF-SC and DB-SC). After the launch on October 20, 2018, we began initial operations, confirmed that all receivers were functioning properly, and released the launch locks on the sensors. Those sensors are not deployed during the cruising phase, but the PWI is still capable performing magnetic field observations. After full deployment of all sensors following insertion into Mercury orbit, the PWI will start its measurements of the electric field from DC to 10 MHz using two dipole antennae with a 32-m tip-to-tip length in the spin plane and the magnetic field from 0.3 Hz to 20 kHz using a three-axis sensor and from 2.5 kHz to 640 kHz using a single-axis sensor at the tip of a 4.5-m solid boom extended from the spacecraft’s side panel. Those receivers and sensors will provide (1) in-situ measurements of electron density and temperature that can be used to determine the structure and dynamics of the Hermean plasma environment; (2) in-situ measurements of the electron and ion scale waves that characterize the energetic processes governed by wave–particle interactions and non-MHD interactions; (3) information on radio waves, which can be used to remotely probe solar activity in the heliocentric sector facing Mercury, to study electromagnetic-energy transport to and from Mercury, and to obtain crustal information from reflected electromagnetic waves; and (4) information concerning dust impacts on the spacecraft body detected via potential disturbances. This paper summarizes the characteristics of the overall PWI, including its significance, its objectives, its expected performance specifications, and onboard and ground data processing. This paper also presents the detailed design of the receiver components installed in a unified chassis. The PWI in the cruise phase will observe magnetic-field turbulence during multiple flybys of Earth, Venus, and Mercury. After the Mercury-orbit insertion planned at the end of 2025, we will deploy all sensors and commence full operation while coordinating with all payloads onboard the Mio and MPO spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • S. Aizawa, D. Delcourt, N. Terada, Sodium ion dynamics in themagnetosphericflanks of Mercury. Geophys. Res. Lett. 45, 595–601 (2018). https://doi.org/10.1002/2017GL076586

    Article  ADS  Google Scholar 

  • B.J. Anderson, C.L. Johnson, H. Korth, L.C. Philpott, Birkeland currents at Mercury, in Geophys. Mon. Ser. “Electric Currents in Geospace and Beyond”, ed. by A. Keiling, O. Marghitu, M. Wheatland (American Geophys, Union, 2018), pp. 279–302. https://doi.org/10.1002/9781119324522.ch17

    Chapter  Google Scholar 

  • A. Balogh, R. Grard, S. Solomon, R. Schulz, Y. Langevin, Y. Kasaba, M. Fujimoto, Missions to Mercury. Space Sci. Rev. 132, 611–645 (2007). https://doi.org/10.1007/s11214-007-9212-4

    Article  ADS  Google Scholar 

  • W. Baumjohann, A. Matsuoka, K.H. Glassmeier, C.T. Russell, T. Nagai, M. Hoshino, T. Nakagawa, A. Balogh, J.A. Slavin, R. Nakamura, W. Magnes, The magnetosphere of Mercury and its solar wind environment: open issues and scientific questions. Adv. Space Res. 38, 604–609 (2006). https://doi.org/10.1016/j.asr.2005.05.117

    Article  ADS  Google Scholar 

  • W. Baumjohann, A. Matsuoka, W. Magnes, K.-H. Glassmeier, R. Nakamura, H. Biernat, M. Delva, K. Schwingenschuh, T. Zhang, H.-U. Auster, K.-H. Fornacon, I. Richter, A. Balogh, P. Cargill, C. Carr, M. Dougherty, T.S. Horbury, E.A. Lucek, F. Tohyama, T. Takahashi, M. Tanaka, T. Nagai, H. Tsunakawa, M. Matsushima, H. Kawano, A. Yoshikawa, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, R. Kataoka, B.J. Anderson, C.T. Russell, U. Motschmann, M. Shinohara, Magnetic field investigation of Mercury’s magnetosphere and the inner heliosphere by MMO/MGF. Planet. Space Sci. 56, 279–286 (2010). https://doi.org/10.1016/j.pss.2008.05.019

    Article  ADS  Google Scholar 

  • W. Baumjohann, A. Matsuoka, Y. Narita, W. Magnes, D. Heyner, K.-H. Glassmeier, R. Nakamura, D. Fischer, F. Plaschke, M. Volwerk, T. Zhang, H.-U. Auster, I. Richter, A. Balogh, C. Carr, M. Dougherty, T.S. Horbury, H. Tsunakawa, M. Matsushima, M. Shinohara, H. Shibuya, T. Nakagawa, M. Hoshino, Y. Tanaka, B.J. Anderson, C.T. Russell, U. Motschmann, F. Takahashi, A. Fujimoto, The BepiColombo-Mio Magnetometer en route to Mercury. Space Sci. Rev. (2020, this issue)

  • C. Béghin, P.M.E. Décréau, J. Pickett, D. Sundkvist, B. Lefebvre, Modeling of Cluster’s electric antennas in space: application to plasma diagnostics. Radio Sci. 40(6), CiteID:RS6008 (2005). https://doi.org/10.1029/2005RS003264

    Article  ADS  Google Scholar 

  • J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, R. Ziethe, BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010). https://doi.org/10.1016/j.pss.2009.09.020

    Article  ADS  Google Scholar 

  • J. Benkhoff, S. Besse, H. Hayakawa, G. Murakami, M. Novara, U. Reininghaus, D. Stramaccioni, O. Sutherland, J. Zender, the BepiColombo team, BepiColombo — Mission overview and science goals. Space Sci. Rev. (2020, this issue)

  • L.G. Blomberg, J.A. Cumnock, Y. Kasaba, H. Matsumoto, H. Kojima, Y. Omura, M. Moncuquet, J.-E. Wahlund, Electric fields in the Hermean environment. Adv. Space Res. 38, 627–631 (2006a). https://doi.org/10.1016/j.asr.2005.02.034

    Article  ADS  Google Scholar 

  • L.G. Blomberg, H. Matsumoto, J.-L. Bougeret, H. Kojima, S. Yagitani, J.A. Cumnock, A.I. Eriksson, G.T. Marklund, J.-E. Wahlund, L. Bylander, L. Ahlen, J.A. Holtet, K. Ishisaka, E. Kallio, Y. Kasaba, A. Matsuoka, M. Moncuquet, K. Mursula, Y. Omura, J.G. Trotignon, MEFISTO—an electric field instrument for BepiColombo/MMO. Adv. Space Res. 38(4), 672–679 (2006b). https://doi.org/10.1016/j.asr.2005.05.032

    Article  ADS  Google Scholar 

  • L.G. Blomberg, J.A. Cumnock, K.-H. Glassmeier, R.A. Treumann, Plasma waves in the Hermean magnetosphere. Space Sci. Rev. 132, 575–591 (2007). https://doi.org/10.1007/s11214-007-9282-3

    Article  ADS  Google Scholar 

  • S.A. Boardsen, J.A. Slavin, Search for pick-up ion generated Na+ cyclotron waves at Mercury. Geophys. Res. Lett. 34, L22106 (2007). https://doi.org/10.1029/2007GL031504

    Article  ADS  Google Scholar 

  • H. Breuillard, P. Henri, L. Bucciantini, M. Volwerk, Y. Karlsson, A. Eriksson, F. Johansson, E. Odelstad, I. Richter, C. Goetz, X. Vallières, R. Hajra, Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission. Astron. Astrophys. 630, A39 (2019). https://doi.org/10.1051/0004-6361/201834876

    Article  ADS  Google Scholar 

  • J.M. Chasseriaux, R. Debrie, C. Renard, Electron density and temperature measurements in the lower ionosphere as deduced from the warm plasma theory of the h.f. quadrupole probe. J. Plasma Phys. 8(2), 231–253 (1972). https://doi.org/10.1017/S0022377800007108

    Article  ADS  Google Scholar 

  • D.C. Delcourt, On the supply of heavy planetary material to the magnetotail of Mercury. Ann. Geophys. 31, 1673–1679 (2013). https://doi.org/10.5194/angeo-31-1673-2013

    Article  ADS  Google Scholar 

  • D.C. Delcourt, T.E. Moore, M.-C.H. Fok, Ion dynamics during compression of Mercury’s magnetosphere. Ann. Geophys. 28, 1467–1474 (2010). https://doi.org/10.5194/angeo-28-1467-2010

    Article  ADS  Google Scholar 

  • N.J. Fox, M.C. Velli, S.D. Bale, R. Decker, A. Driesman, R.A. Howard, J.C. Kasper, J. Kinnison, M. Kusterer, D. Lario, M.K. Lockwood, D.J. McComas, N.E. Raouafi, A. Szabo, The Solar Probe Plus mission: humanity’s first visit to our star. Space Sci. Rev. 204, 7–48 (2016). https://doi.org/10.1007/s11214-015-0211-6

    Article  ADS  Google Scholar 

  • N. Gilet, P. Henri, G. Wattieaux, M. Cilibrasi, C. Beghin, Electrostatic potential radiated by a pulsating charge in a two-electron temperature plasma. Radio Sci. 52, 1432–1448 (2017). https://doi.org/10.1002/2017RS006294

    Article  ADS  Google Scholar 

  • N. Gilet, P. Henri, G. Wattieaux, M. Myllys, O. Randriamboarison, C. Béghin, J.-L. Rauch, Mutual impedance probe in collisionless unmagnetized plasmas with suprathermal electrons—application to BepiColombo. Front. Astron. Space Sci. 6, 16 (2019). https://doi.org/10.3389/fspas.2019.00016

    Article  ADS  Google Scholar 

  • R. Grard, H. Laakso, T.I. Pulkkinen, The role of photoemission in the coupling of the Mercury surface and magnetosphere. Planet. Space Sci. 47, 1459–1463 (1999). https://doi.org/10.1016/S0032-0633(99)00072-0

    Article  ADS  Google Scholar 

  • G. Gustafsson, M. André, T. Carozzi, A.I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J.A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, J-E. Wahlund, First results of electric field and density observations by Cluster EFW based on initial months of operation. Ann. Geophys. 19, 1219–1240 (2001). https://doi.org/10.5194/angeo-19-1219-2001

    Article  ADS  Google Scholar 

  • H. Hayakawa, Y. Kasaba, H. Yamakawa, H. Ogawa, T. Mukai, The BepiColombo/MMO model payload and operation plan. Adv. Space Res. 33(12), 2142–2146 (2004). https://doi.org/10.1016/S0273-1177(03)00438-1

    Article  ADS  Google Scholar 

  • P. Henri, F. Califano, M. Faganello, F. Pegoraro, Magnetized Kelvin-Helmholtz instability in the intermediate regime between subsonic and supersonic regimes. Phys. Plasmas 19, 072908 (2012). https://doi.org/10.1063/1.4739234

    Article  ADS  Google Scholar 

  • P. Henri, S.S. Cerri, F. Califano, F. Pegoraro, C. Rossi, M. Faganello, O. Šebek, P.M. Trávníček, P. Hellinger, J.T. Frederiksen, A. Nordlund, S. Markidis, R. Keppens, G. Lapenta, Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: from fluid to kinetic modeling. Phys. Plasmas 20, 102118 (2013). https://doi.org/10.1063/1.4826214

    Article  ADS  Google Scholar 

  • P. Henri, X. Vallières, R. Hajra, C. Goetz, I. Richter, K.-H. Glassmeier, M. Galand, M. Rubin, A.I. Eriksson, Z. Nemeth, E. Vigren, A. Beth, J.L. Burch, C. Carr, H. Nilsson, B. Tsurutani, G. Wattieaux, Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG. Mon. Not. R. Astron. Soc. 469, S372–S379 (2017). https://doi.org/10.1093/mnras/stx1540

    Article  Google Scholar 

  • K.L. Héritier, P. Henri, X. Vallières, M. Galand, E. Odelstad, A.I. Eriksson, F.L. Johansson, K. Altwegg, E. Behar, A. Beth, T.W. Broiles, J.L. Burch, C.M. Carr, E. Cupido, H. Nilsson, M. Rubin, E. Vigren, Vertical structure of the near-surface expanding ionosphere of comet 67P robed by Rosetta. Mon. Not. R. Astron. Soc. 469, S118–S129 (2017). https://doi.org/10.1093/mnras/stx1459

    Article  Google Scholar 

  • S.Y. Huang, Z.G. Yuan, F. Sahraoui, H.S. Fu, Y. Pang, M. Zhou, K. Fujimoto, X.H. Deng, A. Retinò, D.D. Wang, X.D. Yu, H.M. Li, Occurrence rate of whistler waves in the magnetotail reconnection region. J. Geophys. Res. Space Phys. 122, 7188–7196 (2017). https://doi.org/10.1002/2016JA023670

    Article  ADS  Google Scholar 

  • S.M. Imber, J.A. Slavin, MESSENGER observations of magnetotail loading and unloading: Implications for substorms at Mercury. J. Geophys. Res. 122, 11,402–11,412 (2017). https://doi.org/10.1002/2017JA024332

    Article  Google Scholar 

  • M.K. James, S.M. Imber, T.K. Yeoman, E.J. Bunce, Field line resonance in the Hermean magnetosphere: structure and implications for plasma distribution. J. Geophys. Res. 124, 211–228 (2019). https://doi.org/10.1029/2018JA025920

    Article  Google Scholar 

  • R. Jarvinen, M. Alho, E. Kallio, T.I. Pulkkinen, Ultra-low-frequency waves in the ion foreshock of Mercury: a global hybrid modelling study. Mon. Not. R. Astron. Soc. 491, 4147–4161 (2019). https://doi.org/10.1093/mnras/stz3257

    Article  ADS  Google Scholar 

  • T. Karlsson, E. Liljeblad, A. Kullen, J.M. Raines, J.A. Slavin, T. Sundberg, Isolated magnetic field structures in Mercury’s magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets. Planet. Space Sci. 129, 61–73 (2016). https://doi.org/10.1016/j.pss.2016.06.002

    Article  ADS  Google Scholar 

  • T. Karlsson, Y. Kasaba, J.-E. Wahlund, P. Henri, L. Bylander, W. Puccio, S.-E. Jansson, L. Ahlen, E. Kallio, H. Kojima, A. Kumamoto, K. Lappalainen, B. Lybekk, K. Ishisaka, A. Eriksson, M. Morooka, The MEFISTO and WPT electric field sensors of the plasma wave investigation on the BepiColombo Mio spacecraft: measurements of low and high frequency electric fields at Mercury. Space Sci. Rev. (2020, this issue)

  • Y. Kasaba, H. Matsumoto, Y. Omura, R.R. Anderson, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Statistical studies of plasma waves and backstreaming electrons in the terrestrial electron foreshock observed by Geotail. J. Geophys. Res. 105(A1), 79–103 (2000). https://doi.org/10.1029/1999JA900408

    Article  ADS  Google Scholar 

  • Y. Kasaba, J.-L. Bougeret, L.G. Blomberg, H. Kojima, S. Yagitani, M. Moncuquet, J.-G. Trotignon, G. Chanteur, A. Kumamoto, Y. Kasahara, J. Lichtenberger, Y. Omura, K. Ishisaka, H. Matsumoto, The Plasma Wave Investigation (PWI) onboard the BepiColombo / MMO: first measurements of electric fields, electromagnetic waves, and radio waves around Mercury. Planet. Space Sci. 56, 238–278 (2010). https://doi.org/10.1016/j.pss.2008.07.017

    Article  ADS  Google Scholar 

  • Y. Kasaba, K. Ishisaka, Y. Kasahara, T. Imachi, S. Yagitani, H. Kojima, S. Matsuda, M. Shoji, S. Kurita, T. Hori, A. Shinbori, M. Teramoto, Y. Miyoshi, T. Nakagawa, N. Takahashi, Y. Nishimura, A. Matsuoka, A. Kumamoto, F. Tsuchiya, R. Nomura, Wire Probe Antenna (WPT) and Electric Field Detector (EFD) of Plasma Wave Experiment (PWE) aboard the Arase satellite: specifications and initial evaluation results. Earth Planets Space 69, 174 (2017). https://doi.org/10.1186/s40623-017-0760-x

    Article  ADS  Google Scholar 

  • Y. Kasaba, T. Takashima, S. Matsuda, S. Eguchi, M. Endo, T. Miyabara, M. Taeda, Y. Kuroda, Y. Kasahara, T. Imachi, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, A. Kumamoto, A. Matsuoka, W. Baumjohann, S. Yokota, K. Asamura, Y. Saito, D. Delcourt, M. Hirahara, S. Barabash, N. Andre, M. Kobayashi, I. Yoshikawa, G. Murakami, H. Hayakawa, Mission Data Processor aboard the BepiColombo Mio spacecraft: design and science operation concept. Space Sci. Rev. 216, 34 (2020). https://doi.org/10.1007/s11214-020-00658-x

    Article  ADS  Google Scholar 

  • Y. Kasahara, Y. Kasaba, H. Kojima, S. Yagitani, K. Ishisaka, A. Kumamoto, F. Tsuchiya, M. Ozaki, S. Matsuda, T. Imachi, Y. Miyoshi, M. Hikishima, Y. Katoh, M. Ota, M. Shoji, A. Matsuoka, I. Shinohara, The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite. Earth Planets Space 70, 86 (2018b). https://doi.org/10.1186/s40623-017-0759-3

    Article  ADS  Google Scholar 

  • S. Kasahara, Y. Miyoshi, S. Yokota, T. Mitani, Y. Kasahara, S. Matsuda, A. Kumamoto, A. Matsuoka, Y. Kazama, H.U. Frey, V. Angelopoulos, S. Kurita, K. Keika, K. Seki, I. Shinohara, Pulsating aurora from electron scattering by chorus waves. Nature 554, 337–340 (2018a). https://doi.org/10.1038/nature25505

    Article  ADS  Google Scholar 

  • E. Kilpua, H.W.J. Koskinen, T.I. Pulkkinen, Coronal mass ejections and their sheath regions in interplanetary space. Living Rev. Sol. Phys. 14, 5 (2017). https://doi.org/10.1007/s41116-017-0009-6

    Article  ADS  Google Scholar 

  • M. Kobayashi, H. Shibata, K. Nogami, M. Fujii, T. Hirai, S. Hasegawa, M. Hirabayashi, T. Iwai, H. Kimura, T. Miyachi, M. Nakamura, H. Ohashi, S. Sasaki, S. Takechi, H. Yano, S.R. Srama, H. Krüger, P. Strub, A.-K. Lohse, E. Grün, Mercury Dust Monitor (MDM) onboard the Mio orbiter of the BepiColombo mission. Space Sci. Rev. (2020, this issue)

  • I. Kolmasova, M. Imai, O. Santolik, W.S. Kurth, G.B. Hospodarsky, D.A. Gurnett, J.E.P. Connerney, S.J. Bolton, Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth. Nat. Astron. 2(7), 544–548 (2018). https://doi.org/10.1038/s41550-018-0442-z

    Article  ADS  Google Scholar 

  • W.S. Kurth, S. De Pascuale, J.B. Faden, C.A. Kletzing, G.B. Hospodarsky, S. Thaller, J.R. Wygant, Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. J. Geophys. Res. Space Phys. 120, 904–914 (2015). https://doi.org/10.1002/2014JA020857

    Article  ADS  Google Scholar 

  • S.T. Lindsay, M.K. James, E.J. Bunce, S.M. Imber, H. Korth, A. Martindale, T.K. Yeoman, MESSENGER X-ray observations of magnetosphere surface interaction on the nightside of Mercury. Planet. Space Sci. 125, 72–79 (2016)

    Article  ADS  Google Scholar 

  • S. Matsuda, Y. Kasahara, Y. Goto, Electromagnetic ion cyclotron waves suggesting minor ion existence in the inner magnetosphere observed by the Akebono satellite. J. Geophys. Res. Space Phys. 119, 4348–4357 (2014). https://doi.org/10.1002/2013JA019370

    Article  ADS  Google Scholar 

  • S. Matsuda, Y. Kasahara, C.A. Kletzing, Variation in crossover frequency of EMIC waves in plasmasphere estimated from ion cyclotron whistler waves observed by Van Allen Probe A. Geophys. Res. Lett. 43, 28–34 (2016). https://doi.org/10.1002/2015GL066893

    Article  ADS  Google Scholar 

  • S. Matsuda, Y. Kasahara, H. Kojima, Y. Kasaba, S. Yagitani, M. Ozaki, T. Imachi, K. Ishisaka, A. Kumamoto, F. Tsuchiya, M. Ota, S. Kurita, Y. Miyoshi, M. Hikishima, A. Matsuoka, I. Shinohara, Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer. Earth Planets Space 70, 1, 75:22 (2018). https://doi.org/10.1186/s40623-018-0838-0

    Article  Google Scholar 

  • H. Matsumoto, I. Nagano, R.R. Anderson, H. Kojima, K. Hashimoto, M. Tsutsui, T. Okada, I. Kimura, Y. Omura, M. Okada, Plasma wave observations with GEOTAIL spacecraft. J. Geomagn. Geoelectr. 46, 59–95 (1994). https://doi.org/10.5636/jgg.46.59

    Article  ADS  Google Scholar 

  • H. Matsumoto, T. Okada, K. Hashimoto, I. Nagano, S. Yagitani, M. Tsutsui, Y. Kasaba, K. Tsuruda, H. Hayakawa, A. Matsuoka, S. Watanabe, H. Ueda, Y. Kasahara, Y. Omura, K. Ishisaka, T. Imachi, Y. Tateno, Low Frequency plasma wave Analyzer (LFA) onboard the PLANET-B spacecraft. Earth Planets Space 50(3), 223–228 (1998). https://doi.org/10.5636/jgg.46.59

    Article  ADS  Google Scholar 

  • H. Matsumoto, J.-L. Bougeret, L.G. Blomberg, H. Kojima, S. Yagitani, Y. Omura, M. Moncuquet, G. Chanteur, Y. Kasaba, J.-G. Trotignon, Y. Kasahara (BepiColombo MMO PWI Team), Plasma/radio wave observations at Mercury by the BepiColombo MMO spacecraft. Adv. Geosci. 3, 71 (2006). https://doi.org/10.1142/9789812707192_0008

    Article  Google Scholar 

  • N. Meyer-Vernet, M. Moncuquet, Plasma waves in space: the importance of properly accounting for the measuring device. J. Geophys. Res. Space Phys. 125, e2019JA027723 (2020). https://doi.org/10.1029/2019JA027723

    Article  ADS  Google Scholar 

  • N. Meyer-Vernet, K. Issautier, M. Moncuquet, Quasi-thermal noise spectroscopy: the art and the practice. J. Geophys. Res. 122, 7925–7945 (2017a). https://doi.org/10.1002/2017JA024449

    Article  Google Scholar 

  • N. Meyer-Vernet, M. Moncuquet, K. Issautier, P. Schippers, Frequency range of dust detection in space with radio and plasma wave receivers: theory and application to interplanetary nanodust impacts on Cassini. J. Geophys. Res. Space Phys. 122, 8–22 (2017b). https://doi.org/10.1002/2016JA023081

    Article  ADS  Google Scholar 

  • A. Milillo, M. Fujimoto, E. Kallio, S. Kameda, F. Leblanc, Y. Narita, G. Cremonese, H. Laakso, M. Laurenza, S. Massetti, S. McKenna-Lawlor, A. Mura, R. Nakamura, Y. Omura, D.A. Rothery, K. Seki, M. Storini, P. Wurz, W. Baumjohann, E.J. Bunce, Y. Kasaba, J. Helbert, A. Sprague, Hermean environment WG members. The BepiColombo mission: an outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010). https://doi.org/10.1016/j.pss.2008.06.005

    Article  ADS  Google Scholar 

  • A. Milillo, M. Fujimoto, G. Murakami, J. Benkhoff, J. Zender, S. Aizawa, M. Dósa, L. Griton, D. Heyner, G. Ho, S.M. Imber, X. Jia, T. Karlsson, R.M. Killen, M. Laurenza, S.T. Lindsay, S. McKenna-Lawlor, A. Mura, J.M. Raines, D.A. Rothery, N. André, W. Baumjohann, A. Berezhnoy, P.A. Bourdin, E.J. Bunce, F. Califano, J. Deca, S. de la Fuente, C. Dong, C. Grava, S. Fatemi, P. Henri, S.L. Ivanovski, B.V. Jackson, M. James, E. Kallio, Y. Kasaba, E. Kilpua, M. Kobayashi, B. Langlais, F. Leblanc, C. Lhotka, V. Mangano, A. Martindale, S. Massetti, A. Masters, M. Morooka, Y. Narita, J.S. Oliveira, D. Odstrcil, S. Orsini, M.G. Pelizzo, C. Plainaki, F. Plaschke, F. Sahraoui, K. Seki, J.A. Slavin, R. Vainio, P. Wur, S. Barabash, C.M. Carr, D. Delcourt, K.-H. Glassmeier, M.N. Grande, M. Hirahara, J. Huovelin, O. Korablev, H. Kojima, H. Lichtenegger, S. Livi, A. Matsuoka, R. Moissl, M. Moncuquet, K. Muinonen, E. Quèmerais, Y. Saito, S. Yagitani, I. Yoshikawa, J.-E. Wahlund. Investigating Mercury’s environment with the two-spacecraft BepiColombo mission, Space Sci. Rev. (2020, this issue)

  • Y. Miyoshi, S. Matsuda, S. Kurita, K. Nomura, K. Keika, M. Shoji, N. Kitamura, Y. Kasahara, A. Matsuoka, I. Shinohara, K. Shiokawa, S. Machida, O. Santolik, S.A. Boardsen, R.B. Horne, J.F. Wygant, EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: observations from Van Allen Probes and Arase. Geophys. Res. Lett. 46, 5662–5669 (2019). https://doi.org/10.1029/2019GL083024

    Article  ADS  Google Scholar 

  • M. Moncuquet, A. Lecacheux, N. Meyer-Vernet, B. Cecconi, W.S. Kurth, Quasi thermal noise spectroscopy in the inner magnetosphere of Saturn with Cassini/RPWS: electron temperatures and density. Geophys. Res. Lett. 32, L20S02 (2005). https://doi.org/10.1029/2005GL022508

    Article  Google Scholar 

  • M. Moncuquet, H. Matsumoto, J.-L. Bougeret, L.G. Blomberg, K. Issautier, Y. Kasaba, H. Kojima, M. Maksimovic, N. Meyer-Vernet, P. Zarka, The Radio Waves & Thermal Electrostatic Noise Spectroscopy (SORBET) Experiment on BepiColombo/MMO/PWI: scientific objectives and performance. Adv. Space Res. 38, 680–685 (2006). https://doi.org/10.1016/j.asr.2006.01.020

    Article  ADS  Google Scholar 

  • M. Moncuquet, N. Meyer-Vernet, J.-L. Bougeret, S. Hoang, K. Issautier, A. Lecacheux, M. Maksimovic, F. Pantellini, P. Zarka, I. Zouganelis, A short review of passive R. F. electric antennas as in situ detectors of space plasmas. Inst. Phys. Conf. Ser. 1144, 59 (2009). https://doi.org/10.1063/1.3169305

    Article  ADS  Google Scholar 

  • M. Moncuquet, N. Meyer-Vernet, K. Issautier et al., First in-situ measurements electron density and temperature from quasi-thermal noise spectroscopy with Parker Solar probe/FIELDS. Astrophys. J. Suppl. Ser. 246, 44 (2020). https://doi.org/10.3847/1538-4365/ab5a84

    Article  ADS  Google Scholar 

  • T. Mukai, H. Yamakawa, H. Hayakawa, Y. Kasaba, H. Ogawa, Present status of the BepiColombo / Mercury Magnetospheric Orbiter. Adv. Space Res. 38, 578–582 (2006). https://doi.org/10.1016/j.asr.2005.09.038

    Article  ADS  Google Scholar 

  • D. Müller, R.G. Marsden, O.C.St. Cyr, H.R. Gilbert, The Solar Orbiter team, Solar orbiter—exploring the sun-heliosphere connection. Sol. Phys. 285, 25–70 (2013). https://doi.org/10.1007/s11207-012-0085-7

    Article  ADS  Google Scholar 

  • G. Murakami, H. Hayakawa, H. Ogawa, S. Matsuda, T. Seki, Y. Kasaba, Y. Saito, I. Yoshikawa, M. Kobayashi, W. Baumjohann, A. Matsuoka, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, D. Delcourt, M. Hirahara, S. Barabash, O. Korablev, M. Fujimoto, Mio–first comprehensive exploration of Mercury’s space environment: mission overview. Space Sci. Rev. (2020a, this issue)

  • G. Murakami, I. Yoshikawa, S. Kameda, O. Korablev, V. Kottsov, M. Kuwabara, T. Sato, Y. Suzuki, K. Yoshioka, A. Tavrov, Mercury Sodium Atmosphere Spectral Imager (MSASI) onboard the BepiColombo/Mio spacecraft: overviews, calibrated performances, and observation plans. Space Sci. Rev. (2020b, this issue)

  • M. Myllys, P. Henri, M. Galand, K.L. Heritier, N. Gilet, R. Goldstein, A.I. Eriksson, F. Johansson, J. Deca, Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta. Astron. Astrophys. 630, A42 (2019). https://doi.org/10.1051/0004-6361/201834964

    Article  ADS  Google Scholar 

  • K. Nogami, M. Fujii, H. Ohashi, T. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Grun, R. Srama, Development of the Mercury Dust Monitor (MDM) onboard BepiColombo mission. Planet. Space Sci. 56, 108–115 (2010). https://doi.org/10.1016/j.pss.2008.08.016

    Article  ADS  Google Scholar 

  • T. Ono, H. Oya, A. Morioka, A. Kumamoto, K. Kobayashi, T. Obara, T. Nakagawa, Plasma Waves and Sounder (PWS) experiment onboard the Planet-B Mars orbiter. Earth Planets Space 50, 213–221 (1998). https://doi.org/10.1186/BF03352106

    Article  ADS  Google Scholar 

  • S. Orsini, L.G. Blomberg, D. Delcourt, R. Grard, S. Massetti, K. Seki, J. Slavin, Magnetosphere–exosphere—surface coupling at Mercury. Space Sci. Rev. 132, 551–573 (2007). https://doi.org/10.1007/s11214-007-9222-2

    Article  ADS  Google Scholar 

  • M. Ozaki, Y. Miyoshi, K. Shiokawa, K. Hosokawa, S. Oyama, R. Kataoka, Y. Ebihara, Y. Ogawa, Y. Kasahara, S. Yagitani, Y. Kasaba, A. Kumamoto, F. Tsuchiya, S. Matsuda, Y. Katoh, M. Hikishima, S. Kurita, Y. Otsuka, R.C. Moore, Y. Tanaka, M. Nosé, T. Nagatsuma, N. Nishitani, A. Kadokura, M. Connors, T. Inoue, A. Matsuoka, I. Shinohara, Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nat. Commun. 10, 257 (2019). https://doi.org/10.1038/s41467-018-07996-z

    Article  ADS  Google Scholar 

  • M. Pulupa, S.D. Bale, J.W. Bonnell, T.A. Bowen, N. Carruth, K. Goetz, D. Gordon, P.R. Harvey, M. Maksimovic, J.C. Martínez-Oliveros, M. Moncuquet, P. Saint-Hilaire, D. Seitz, D. Sundkvist, The Solar Probe Plus Radio Frequency Spectrometer: measurement requirements, analog design, and digital signal processing. J. Geophys. Res. Space Phys. 122, 2836–2854 (2017). https://doi.org/10.1002/2016JA023345

    Article  ADS  Google Scholar 

  • I.G. Richardson, Solar wind stream interaction regions throughout the heliosphere. Living Rev. Sol. Phys. 15, 1 (2018). https://doi.org/10.1007/s41116-017-0011-z

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, P. Robert, Yu.V. Khotyaintsev, Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys. Rev. Lett. 102, 231102 (2009). https://doi.org/10.1103/PhysRevLett.102.231102

    Article  ADS  Google Scholar 

  • F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Three dimensional anisotropic \(k\) spectra of turbulence at subproton scales in the solar wind. Phys. Rev. Lett. 105, 131101 (2010). https://doi.org/10.1103/PhysRevLett.105.131101

    Article  ADS  Google Scholar 

  • Y. Saito, J.A. Sauvaud, M. Hirahara, S. Barabash, D. Delcourt, T. Takashima, K. Asamura, the BepiColombo MMO MPPE team, Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Planet. Space Sci. 56, 182–200 (2010). https://doi.org/10.1016/j.pss.2008.06.003

    Article  ADS  Google Scholar 

  • Y. Saito, D. Delcourt, M. Hirahara, S. Barabash, N. Andre, T. Takashima, K. Asamura, S. Yokota, M.N. Nishino, J.-A. Sauvaud, C. Aoustin, A. Barthe, A. Cadu, A. Fedorov, A.-M. Frezoul, C. Garat, E. Le Comte, Q.-M. Lee, J.-L. Medale, D. Moirin, E. Penou, M. Petiot, G. Peyre, J. Rouzaud, H.-C. Seran, W. Miyake, I. Shinohara, H. Hasegawa, K. Seki, A. Coates, F. Leblanc, C. Verdeil, B. Katra, D. Fontaine, J.-M. Illiano, J.-J. Berthelier, M. Fraenz, H. Fischer, N. Krupp, H. Krueger, B. Fiethe, H. Michalik, T. Mitani, W.-H. Ip, M. Hoshino, M. Fujimoto, N. Terada, Y. Harada, K. Keika, Pre-flight calibration and near-Earth commissioning results of Mercury Plasma Particle Experiment. (MPPE) onboard MMO (Mio). Space Sci. Rev. (2020, this issue)

  • O. Santolik, M. Parrot, F. Nemec, Propagation of equatorial noise to low altitudes: decoupling from the magnetosonic mode. Geophys. Res. Lett. 43, 6694–6704 (2016). https://doi.org/10.1002/2016GL069582

    Article  ADS  Google Scholar 

  • P. Schippers, M. Moncuquet, N. Meyer-Vernet, A. Lecacheux, Core electron temperature and density in the innermost Saturn’s magnetosphere from HF power spectra analysis on Cassini. J. Geophys. Res. 118, 7170–7180 (2013). https://doi.org/10.1002/2013ja019199

    Article  Google Scholar 

  • M. Shoji, Y. Miyoshi, Y. Omura, L.M. Kistler, Y. Kasaba, S. Matsuda, Y. Kasahara, A. Matsuoka, R. Nomura, K. Ishisaka, A. Kumamoto, F. Tsuchiya, S. Yagitani, M. Teramoto, K. Asamura, T. Takashima, I. Shinohara, Instantaneous frequency analysis on nonlinear EMIC emissions: Arase observation. Geophys. Res. Lett. 45, 13,199–13,205 (2018). https://doi.org/10.1029/2018GL079765

    Article  Google Scholar 

  • J.A. Slavin, H.R. Middleton, J.M. Raines, X. Jia, J. Zhong, W.J. Sun, S. Livi, S.M. Imber, G.K. Poh, M. Akhavan-Tafti, J.Â.M. Jasinski, G.A. DiBraccio, C. Dong, R.M. Dewey, M.L. Mays, MESSENGER observations of disappearing dayside magnetosphere events at Mercury. J. Geophys. Res. Space Phys. 124, 6613–6635 (2019)

    Article  ADS  Google Scholar 

  • T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012). https://doi.org/10.1029/2011JA017268

    Article  ADS  Google Scholar 

  • T.K. Suzuki, On the heating of the solar corona and the acceleration of the low-speed solar wind by acoustic waves generated in the corona. Astrophys. J. 578, 598–609 (2002). https://doi.org/10.1086/342347

    Article  ADS  Google Scholar 

  • N. Takahashi, Y. Kasaba, Y. Nishimura, A. Shinbori, T. Kikuchi, T. Hori, Y. Ebihara, N. Nishitani, Propagation and evolution of electric fields associated with solar wind pressure pulses based on spacecraft and ground-based observations. J. Geophys. Res. 122, 8446–8461 (2017). https://doi.org/10.1002/2017JA0233990

    Article  Google Scholar 

  • R.M. Thorne, Radiation belt electrons: the importance of wave–particle interactions. Geophys. Res Lett. 37, L22107 (2010). https://doi.org/10.1029/2010GL044990

    Article  ADS  Google Scholar 

  • J.G. Trotignon, C. Beghin, D. Lagoutte, J.L. Michau, H. Matsumoto, H. Kojima, K. Hashimoto, Y. Kasaba, L.G. Blomberg, J.P. Lebreton, A. Masson, M. Hamelin, R. Pottelette, Active measurement of the thermal electron density and temperature on the Mercury Magnetospheric Orbiter of the BepiColombo mission. Adv. Space Res. 38(4), 686–692 (2006). https://doi.org/10.1016/j.asr.2006.03.031

    Article  ADS  Google Scholar 

  • K. Tsuruda, H. Hayakawa, M. Nakamura, T. Okada, A. Matsuoka, F.S. Mozer, R. Schmidt, Electric field measurements on the GEOTAIL satellite. J. Geomagn. Geoelectr. 46, 693–711 (1994). https://doi.org/10.5636/jgg.46.693

    Article  ADS  Google Scholar 

  • E. Vigren, N.J.T. Edberg, A.I. Eriksson, M. Galand, P. Henri, F.L. Johansson, E. Odelstad, M. Rubin, X. Vallières, The evolution of the electron number density in the coma of Comet 67P at the location of Rosetta from 2015 November through 2016 March. Astrophys. J. 881, 1 (2019). https://doi.org/10.3847/1538-4357/ab29f7

    Article  ADS  Google Scholar 

  • G. Wattieaux, N. Gilet, P. Henri, X. Vallières, L. Bucciantini, RPC-MIP observations at comet 67P/Churyumov-Gerasimenko explained by a model including a sheath and two populations of electrons. Astron. Astrophys. 630, A41 (2019). https://doi.org/10.1051/0004-6361/201834872

    Article  ADS  Google Scholar 

  • D. Winterhalter, M.G. Kivelson, Observations of the Earth’s bow shock under high Mach number / high plasma beta solar wind conditions. Geophys. Res. Lett. 15(10), 1161–1164 (1988). https://doi.org/10.1029/GL015i010p01161

    Article  ADS  Google Scholar 

  • M. Yagi, K. Seki, Y. Matsumoto, D.C. Delcourt, F. Leblanc, Global structure and sodium ion dynamics in Mercury’s magnetosphere with the offset dipole. J. Geophys. Res. 122, 10990–11002 (2017). https://doi.org/10.1002/2017JA024082

    Article  Google Scholar 

  • S. Yagitani, M. Ozaki, F. Sahraoui, L. Mirioni, M. Mansour, G. Chanteur, C. Coillot, S. Ruocco, V. Leray, M. Hikishima, D. Alison, O. Le Contel, H. Kojima, Y. Kasahara, Y. Kasaba, T. Sasaki, T. Yumoto, Y. Takeuchi, Measurements of magnetic field fluctuations for Plasma Wave Investigation by the search coil magnetometers (SCM) onboard Bepicolombo Mio (Mercury Magnetospheric Orbiter). Space Sci. Rev. (2020, this issue)

  • H. Yamakawa, H. Ogawa, Y. Sone, H. Hayakawa, Y. Kasaba, T. Takashima, T. Mukai, T. Tanaka, M. Adachi, BepiColombo Mercury Magnetospheric Orbiter design. Acta Astronaut. 62, 699–705 (2008). https://doi.org/10.1016/j.actaastro.2008.01.040

    Article  ADS  Google Scholar 

  • I. Yoshikawa, O. Korablev, S. Kameda, D. Rees, H. Nozawa, S. Okano, V. Gnedykh, V. Kottsov, K. Yoshioka, G. Murakami, F. Ezawa, G. Cremonese, The Mercury sodium atmospheric spectral imager for the MMO spacecraft of BepiColombo. Planet. Space Sci. 56, 224–237 (2010). https://doi.org/10.1016/j.pss.2008.07.008

    Article  ADS  Google Scholar 

  • P. Zarka, R.A. Treumann, B.P. Ryabov, V.B. Ryabov, Magnetically-driven planetary radio emissions and applications to extrasolar planets. Astrophys. Space Sci. 277, 293–300 (2001). https://doi.org/10.1023/A:1012221527425

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors, the core members of the BepiColombo MMO PWI team, thanks to all members participating to our team:

[Original PI, Co-PI, and lead Co-I members who led us from the beginning] Hiroshi Matsumoto, Jean-Louis Bougeret, Jean-Gabriel Trotignon, Gérard Chanteur, Lars Blomberg, and Yoshiharu Omura

[EWO, WPT, and LF-SC] Y. Ashihara, Y. Goto, K. Hashimoto, M. Hikishima, Y. Katoh, T. Kimura, H. Kita, M. Kitahara, S. Kurita, H. Misawa, T. Miyake, Y. Miyake, Y. Miyoshi, T. Murata, T. Nakagawa, M. Ozaki, Y. Nishimura, N. Takahashi, N. Terada, F. Tsuchiya, Y. Tsugawa, M. Tsutsui, Y. Ueda, M. Yagi

[SORBET] M. Dekkali, O. Alexandrova, P.-L. Astier, K. Boughedada, B. Cecconi, B. Chasles, S. Davy, Y. de Conchy, L. Griton, M. Maksimovic, Q.N. Nguyen, F. Pantellini, S. Vassin, P. Zarka

[DB-SC] C. Coillot, N. Cornilleau-Wehrlin,, M. Hamelin, O. Le Contel, V. Leray, M. Mansour, L. Mirioni, R. Pottelette, A. Roux, S. Ruocco

[AM2P] C. Beghin, L. Bucciantini, F. Califano, C. Cavoit, F. Colin, T.-D. De Wit, P. Decreau, T. Hachemi, N. Gilet, V. Krasnosselskikh, D. Lagoutte, J.-P. Lebreton, O. Le-Duff, F. Lefeuvre, M. Leveque, J.-L. Michau, N. Traore, X. Vallières

[MEFISTO] L. Ahlen, M. Andre, M. Berglund, J. Bergman, L. Bylander, J. Cumnock, A. Eriksson, J. Holtet, E. Kallio, K. Lappalainen, J.-P. Lebreton, P.-A. Lindqvist, B. Lybekk, A. Malkki, G. Marklund, A. Masson, W.J. Miloch, M. Morooka, K. Mursula, G. Olsson, H. Opgenoorth, W. Puccio

[ISDM] L. Bodnar, C. Ferencz, O.E. Ferencz, D. Hamar, S. Pasztor, P. Steinbach, P. Szegedi

The authors are also grateful to all Mio and BepiColombo project members in the environment who are awaiting the successful end of a long travel to the hottest planet and the real start of the discovery campaigns starting in 2025. The PWI team was supported by JAXA (Japan), CNES (France), SNSA (Sweden), NSC (Norway), and HSO (Hungary). The PWI team also wants to thank RISH, Kyoto University, for the PME integration tests using the PEMSEE system. The authors wish to express their deep appreciation to A. Morioka, T. Mukai, T. Ono, M. Tsuboi, and K. Tsuruda for their valuable comments and encouragement including the multiple reviews.

The Japanese members would like to deeply thank all colleagues of Mitsubishi Heavy Industries Ltd. (Y. Kuroda, H. Ikebuchi, M. Koyama, M. Sasahara, A. Nakajima, T. Miyabara, M. Kusano, Y. Matsuda, T. Sugimoto, M. Sato), NIPPI Co. Ltd (K. Hamada, J. Kurihara, O. Maeda, M. Makita, K. Okazaki, Y. Ono, T. Sasaki, H. Sato, Y. Takeuchi, T. Yumoto), Y. Sato, and S. Shinoda for the designs, developments, and tests of PME, EWO, WPT, SC and MAST during the more than 10 years from the beginning of this project in early 2000s.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Kasaba.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The BepiColombo mission to Mercury

Edited by Johannes Benkhoff, Go Murakami and Ayako Matsuoka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasaba, Y., Kojima, H., Moncuquet, M. et al. Plasma Wave Investigation (PWI) Aboard BepiColombo Mio on the Trip to the First Measurement of Electric Fields, Electromagnetic Waves, and Radio Waves Around Mercury. Space Sci Rev 216, 65 (2020). https://doi.org/10.1007/s11214-020-00692-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00692-9

Keywords

Navigation